Смекни!
smekni.com

Спектрометрическое сканирование атмосферы и поверхности Земли (стр. 3 из 8)

Лидарные съемки

Лидарная съемка является активной и основана на непрерывном получении отклика от отражающей поверхности, подсвечиваемой лазерным монохроматическим излучением с фиксированной длиной волны. Частота излучателя настраивается на резонансные частоты поглощения сканируемого компонента (например приповерхностного метана), так что в случае его заметных концентраций соотношение откликов в точках концентрирования и в вне их будут резко повышенными. Фактически - лидарная спектрометрия это геохимическая съемка приповерхностных слоев атмосферы, ориентированная на обнаружение микроэлементов или их соединений, концентрирующихся над современно активными геоэкологическими объектами. Устройства лидарной съемки оборудуются на низковысотных носителях. [1-9]

Газовый состав атмосферы

Предпринятые ранее измерения общего содержания водяного пара в марсианской атмосфере обнаружили, что водяной пар появляется в середине лета соответствующего полушария и его содержание становится максимальным примерно через два месяца, достигая 50 мкм при характерных горизонтальных масштабах порядка 103 км (наибольшее влагосодержание атмосферы наблюдается в умеренных широтах). Рассматриваемые наблюдения охватывают южное (сухое) полушарие и северные широты до 20° при наличии нескольких изолированных серий измерений в полосе 40—50° с. ш. Прибор, предназначенный для определения общего влагосодержания (датчик водяного пара на Марсе — ДВПМ), представляет собой спектрометр с дифракционной решеткой, функционирующей в 7200 см-1 (1,4 мкм) полосе поглощения водяного пара при спектральном разрешении 1,2 см-1, что позволяет обеспечить измерения влагосодержаний меньше 1 мкм атм. ДВПМ обычно работает как пятиканальный радиометр, три канала которого расположены вблизи центра полосы (7223, 13; 7232, 20; 7242,74 см-1), а два — в окнах прозрачности. Приемниками излучения для всех каналов служат радиационно охлаждаемые сернисто-свинцовые фотосопротивления. Иногда осуществлялось сканирование по частоте с целью измерений спектрального распределения излучения в диапазоне 7215—7251 см-1. Поле зрения ДВПМ составляет 2x16 мрад, что соответствует «пятну» на местности 3X24 км при высоте периапсиса 1500 км. За счет ступенчатого сканирования на 15 шагов вдоль короткой стороны поля зрения достигается охват площади около 20X45 км (в периапсисе) за период сканирования 4,48 с.

Наличие данных пятиканальных измерений позволяет определить не только общее влагосодержание, но также температуру и атмосферное давление вблизи уровня «центра тяжести» слоя водяного пара. Данные наблюдений свидетельствуют об очень малом влагосодержаний (0—30 мкм) марсианской атмосферы в южном полушарии и постепенном увеличении влагосодержания при перемещении в северное полушарие. Максимальные значения достигали 20—30 мкм, причем наибольшее значение (30 мкм) зарегистрировано в районе Elysium Amazonis при измерениях перед выводом АМС на орбиту вокруг Марса. Большой интерес представляют наблюдения дневного хода влагосодержания, отражающие особенности фазовых превращений воды в течение суточного цикла. Условия наблюдений позволили осуществить слежение за вариациями влагосодержания с рассвета до полудня в трех точках: 10,83° с. ш., 15,69° ю. ш. и 17,77° ю. ш. Для первой из этих точек обнаружена регулярная воспроизводимость дневного хода с максимумом влагосодержания в местный полдень. Наблюдаются различия в дневном ходе для разных точек планеты. Водяной пар располагается близко к поверхности планеты и, по-видимому, находится в насыщающем равновесии по отношению к приповерхностной дымке или туману в течение большей части дня. По меньшей мере 80% водяного пара должно переходить в твердую фазу в период между полуднем и последующими утренними сумерками.

Общее содержание водяного пара оказалось максимальным в полосе 70—80° с. ш., а его абсолютные значения выше когда-либо наблюдавшихся ранее. Широтный профиль общего содержания водяного пара на 180° з. д. характеризуется возрастанием от нулевых значений в южном полушарии до 70—80 мкм в полосе 70—80° с. ш. и несколько убывает (до 55 мкм) вблизи Северного полюса (точность отдельных измерений составляет 10—15%, а средних значений ±4%). Аналогичные результаты дало построение меридиональных профилей для других долгот.

Столь значительное влагосодержание атмосферы предполагает наличие у поверхности планеты таких высоких температур (>204 К), которые не допускают сохранение полярной шапки из твердой углекислоты (в этом случае температура должна быть равна 150 К). Отсюда вытекает, что доминирующим компонентом летней остаточной северной полярной шапки является лед. Грубая оценка толщины периферийной части ледового покрова полярной шапки приводит к значениям порядка 1—2 км. Толщина льда в центральной (сплошной) части полярной шапки должна быть такой же или большей.

Поскольку содержание водяного пара в атмосфере Марса очень мало, весьма вероятно, что мощным резервуаром водяного льда является планетарный реголит. Важной целью дальнейших исследований должно стать выяснение вопроса о том, является ли этот полярный резервуар в настоящее время суммарным источником или стоком атмосферного водяного пара на протяжении промежутков времени больше марсианского года.

В работе [86] рассмотрены результаты измерений состава и структурных параметров марсианской атмосферы, осуществленных при входе СА «Викинг-1» в атмосферу планеты 20 июля 1976 г. Состав атмосферы на высотах более 100 км измерялся при помощи масс-спектрометра для нейтральных газовых компонентов в диапазоне масс 1—50. Для измерений параметров ионосферы служил анализатор с замедляющим потенциалом (АЗП), позволяющий измерять температуру, состав и концентрацию ионов, а также энергетический спектр электронов (главной целью было в данном случае изучение взаимодействия солнечного ветра с верхней атмосферой). Датчики давления, температуры и ускорения предназначались для измерений на высотах ниже 100 км. Эта аппаратура вместе с гироскопом и радарным альтиметром орбитального отсека дала возможность получить вертикальные профили плотности, давления, температуры и ветра в широком диапазоне высот.

Анализ данных масс-спектрометра для высоты 135 км выявляет наличие отчетливых пиков при массах 40 и 20, свидетельствующих о наличии аргона. Оценка его отношения смеси (относительно СО2) дала значение около 0,015 по объему, которое сильно расходится с данными АМС «Марс-6», приведшими к отношению смеси 0,35±0,10 [5, 12]. По-видимому, отношение смеси 40Ar в нижних слоях марсианской атмосферы не может быть столь высоким и не превышает 0,01—0,02.

Хотя следует, естественно, отдать предпочтение данным прямых измерений, необходимо упомянуть, что, на основе анализа имеющихся данных спектроскопических и радиорефракционных измерений, результаты прямых измерений на СА «Марс-6» не противоречат этим данным. Если исходить из радиорефракционных данных, наличие 25% аргона вызывает возрастание давления у поверхности на 0,5 мбар. Присутствие значительного количества аргона в марсианской атмосфере является одним из аргументов в пользу гипотезы о возможности существенно иного климата в геологическом прошлом Марса при атмосферном давлении 0,1 — 1 атм, более высокой температуре и наличии водных бассейнов.

Полученный по данным СА «Викинг-1» пик при массе 28 отображает вклад СО2+, образующегося в результате ионизации СО2 и СО, в дополнение к N2+ который является продуктом ионизации N2. Отношение смеси молекулярного азота (относительно СО2) составляет около 0,06. Предварительная экстраполяция этих данных на более низкие высоты приводит к отношениям смеси порядка 0,02—0,03. На больших высотах отношение смеси молекулярного азота возрастает, вследствие влияния диффузионного разделения.

Оценка отношения смеси О2 по пику массы 32 дает значение около 0,003 на высоте 135 км. Пик при массе 16 указывает на присутствие измеримых количеств атомарного кислорода. Соотношения концентраций изотопов 18О/16О и 13С/12С близки к их земным значениям. Анализ вертикальных профилей концентрации СО2, Аr, N2 и О2 в слое 140—190 км приводит к оценке средней температуры 180±20 К. Заметное проявление диффузионного разделения газов на высотах более 140 км свидетельствует о том, что существенное влияние перемешивания в атмосфере ограничивается этим уровнем.

Данные АЗП для высоты 130 км указывают на то, что главным компонентом марсианской ионосферы является О2+ (этот важный результат является новым), а концентрация СО2+ оказывается примерно в 9 раз меньшей. Ионная температура составляет около 160 К, что согласуется с результатами масс-спектрометрических измерений. Полученные данные свидетельствуют о ведущем значении для ионосферы реакции: СО2++O → + О2+.

Измерения в нижних слоях атмосферы привели к давлению у поверхности планеты в точке посадки СА, равному 7,3 мбар (точка посадки на 2,9 км выше среднего уровня марсианской поверхности, которому соответствует давление 6,1 мбар) и температуре 241К при вертикальном градиенте температуры в приповерхностном слое, составляющем 3,7 К/км. Плотность воздуха, оцененная по скорости парашютирования, равна 0,0136 кг/м3 на высоте 2,7 км, что указывает на преимущественно углекислотный состав атмосферы. В слое 25—90 км температура варьирует в пределах 120—165К при наличии пиков на высотах 30 и 64 км, а выше 140 км плавно переходит в зону температур, полученную по данным масс-спектрометра.