Смекни!
smekni.com

Строительные машины и средства малой механизации (стр. 3 из 6)

Важной характеристикой насосов является высота всасывания. Геометрическая высота всасывания – понятие, которым пользуются при практической эксплуатации насосов. Представляет собой расстояние (в м) по вертикали от уровня жидкости в заборном устройстве до оси насоса или оси всасывающего патрубка.

Она зависит от атмосферного давления, температуры и плотности перекачиваемой среды, линейных и местных сопротивлений всасывающей линии. При нормальных атмосферных условиях (температура +20 ºС, давление 0,1 МПа = 760 мм рт.ст. = 10 м вод.ст.) геометрическая высота всасывания насосов, перекачивающих воду, не превышает 5 – 7 м.

Общим принципом действия всех насосов является создание разрежения внутри корпуса при движении рабочего органа. Вследствие появляющейся разности давлений (градиента силы) жидкость поступает в корпус насоса, подхватывается рабочим органом и направляется в транспортную (нагнетательную) магистраль.

2.1 Центробежный насос 2К–6

Центробежные консольные насосы типа «К» общего назначения предназначены для перекачивания воды и сходных с ней по физико–механическим свойствам жидкостей с температурной от 0 до 85 ºС. Они используются в системах водоснабжения, отопления, для водоотлива и понижения уровня грунтовых вод при производстве земляных работ в водонасыщенных грунтах и т.д.

Центробежный консольный, одноступенчатый насос 2К-6 (рис. 2.1) имеет закрытое с односторонним осевым подводом воды рабочее колесо 2, расположенное в улиткообразном корпусе 1 и посаженное на горизонтальный вал 3. В месте прохода вала через корпус насоса установлен сальник 5 с мягкой набивкой и нажимной втулкой.

Корпус насоса представляет собой чугунную отливку с внутренней полостью в виде спирали (улитки) с каналом 4, переходящим в напорный патрубок 6.

Рабочее колесо состоит из двух фасонных дисков с восемью профилированными лопастями, образующими расширяющиеся к периферии колеса каналы.

К всасывающему патрубку 7 подсоединяется рукав или всасывающая труба 8 с обратным клапаном 9 и фильтром (сеткой) 10 при использовании насоса для водоотлива и понижения уровня грунтовой воды.

Перед пуском в работу всасывающую трубу и корпус насоса заполняют водой: вручную через воронку, вставляемую в отверстие, предварительно отвернув пробку 11; из напорного водопровода или из других источников воды. Обратный клапан 9 не дает заливаемой воде уходить в водоем. Заливка центробежных насосов водой перед пуском в работу вызывается необходимостью удаления из корпуса воздуха, так как центробежных сил вращающегося колеса недостаточно для его вытеснения из-за низкой плотности.

Привод насоса осуществляется чаще всего от электродвигателя через упругую муфту. После пуска двигателя в работу вал и укрепленное на нем рабочее колесо начинают вращаться против хода часовой стрелки, если смотреть со стороны привода.

При вращении рабочего колеса жидкость увлекается лопастями и под действием центробежной силы отбрасывается от центра колеса в канал. В канале создается давление, под действием которого вода нагнетается в напорный патрубок и далее в магистральный трубопровод. В центре же рабочего колеса давление становится ниже атмосферного и вода начинает поступать из водоема по всасывающей трубке к центру рабочего колеса, обеспечивая непрерывную работу насоса.

Достоинствами центробежных насосов являются высокий КПД (до 0,85), компактность, простота конструкции и надежность в эксплуатации, возможность относительно просто регулировать подачу и напор. Основной недостаток их заключается в необходимости заполнять перед каждым пуском в работу всасывающую линию и корпус насоса водой. Этот недостаток устраняют установкой насоса «под залив», т.е. ниже уровня перекачиваемой

жидкости, использованием обратных клапанов и емкостей-ловушек на всасывающей линии. При открытом водоотливе обратный клапан, забиваясь грязью и строительным мусором, нередко не срабатывает. Поэтому его необходимо периодически очищать, а на конец всасывающей трубы устанавливать предохранительную сетку (фильтр).

Высота всасывания насоса 6 м, напор3м, подача 20м/ч.


Центробежный насос 2К–6: 2 – диаметр входного патрубка, уменьшенный в 25 раз, К – консольный, 6 – коэффициент быстроходности, уменьшенный в 10 раз

2.2 Растворонасос С–251.

Предназначен для транспортирования растворных смесей подвижностью не менее 5 см по резинотканевым рукавам (шлангам) и металлическим раствороводам на расстояние до 200 м по горизонтали или до 40 м по вертикали. Применяется для подачи известково-песчаных растворных смесей на рабочее место штукатура и механизированного их нанесения на оштукатуриваемые поверхности с помощью форсунок, одеваемых на конец рукава. Внутренний диаметр транспортных рукавов составляет 32; 38 и 75 мм.

Растворонасос С-251 относится к растворонасосам с плоской резиновой диафрагмой, испытывающей периодические деформации растяжения – сжатия под действием давления от движущегося возвратно–поступательно плунжер (через промежуточную среду – воду).

Принцип действия растворонасоса основан на периодическом изменении объема рабочей камеры, уменьшающегося при перемещении диафрагмы в ее увеличивающегося при возврате в первоначальное (вертикальное ) положение.

Диафрагменный растворонасос состоит из следующих основных узлов: насосной части, привода, кривошипно-шатунного механизма с плунжером, предохранительных устройств, пульта управления и тележки с ходовыми колесами.

2.3 Растворонасос С-251

Перед пуском растворонасоса в работу бункер 16 заполняют процеженным через сито свежеприготовленным раствором, а насосную камеру 7 заполняют водой через заливочно-предохранительное устройство 15 при крайнем заднем положении плунжера 6.

После пуска электродвигателя 1 вращение от его вала через систему зубчатых передач 2 и 3 передается на кривошипно-шатунный механизм 4, 5 (коленчатый вал и шатун). Шатун преобразует вращательное движение коленчатого вала в возвратно–поступательное движение плунжера.

Внедряясь в насосную камеру 7, плунжер давит на воду, которая передает давление резиновой диафрагме 8. Диафрагма в результате этого прогибается в сторону рабочей камеры 9, вытесняя из нее часть воздуха.

При возврате плунжера в исходное положение давление в насосной камере падает до исходного и диафрагма под действием сил упругости также возвращается в первоначальное положение, освобождая при этом, занимаемый ранее объем рабочей камеры. Вследствие этого в камере возникает разрежение, под воздействием которого шаровой нагнетательный клапан 10 опускается в гнездо (закрывается), а всасывающий 13 открывается и растворная смесь под действием разности давлений и веса столба растворной смеси в бункере 16 поступает в рабочую камеру 9. Перемещение при этом самодействующих клапанов 10 и 13 вверх ограничивается скобами-ограничителями. Опускание клапанов вниз в положении «ЗАКРЫТО» происходит под действием силы тяжести.

При следующем движении плунжера влево диафрагма, выгибаясь в сторону рабочей камеры, давит на поступившую растворную смесь. Под действием этого давления всасывающий клапан 13 закроется, а нагнетательный 10 откроется и растворная смесь поступит в материальный патрубок 12 и далее в транспортный рукав, а большая часть ее в воздушный колпак 11, сжимая имеющийся там воздух, давление которого фиксируется манометром 14.

Далее циклы движения плунжера и диафрагмы повторяются.

Воздушный колпак служит для сглаживания пульсации давления в растворной смеси, появляющегося из–за цикличного возвратно–поступательного движения плунжера, что вызывает резкий спад или подъем давления в транспортной магистрали. Это явление известно под названием гидравлического удара, выводящего из строя быстроразъемные замки, соединяющие отдельные части транспортного рукава между собой.

При холостом ходе плунжера давление в рукаве падает. В этот момент сжатая воздушная подушка выдавливает растворную смесь из колпака в рукав, поддерживая в нем повышенное давление. Это сглаживает перепад давлений и пульсацию раствора в магистрали, уменьшая гидравлический удар.

Перепускное устройство на корпусе насоса (на схеме отсутствует) служит для циркуляции растворной смеси по малому кругу бункер – рабочая камера – перепускное устройство – бункер, с целью восстановления однородности расслоившейся смеси при длительном ее хранении в бункере.