Смекни!
smekni.com

Автоматизация и управление технологическими процессами обжига клинкера при производстве цемента (стр. 2 из 6)

При значительных колебаниях химического состава известня­кового и глинистого компонента чаще применяется мокрый способ, так как однородную (гомогенизирован­ную) сырьевую смесь получить легче, когда сырьевые материалы имеют высокую влажность, более мяг­кую структуру и легко диспергируются водой. Выбор мокрого спосо­ба предопределяется также в случае наличия в глине избытка посторонних примесей, для удаления кото­рых необходимо «отмучи­вание» в присутствии воды. Кроме того, при мокром способе отжига облегчается размол сырья и требуется мень­ше энергии на его измель­чение.

Мокрый способ производства используется при изготовлении це­мента из мела (карбонатный компонент), глины (силикатный ком­по­нент) и железосодержащих добавок (конверторный шлам, желе­зис­тый продукт, пиритные огарки). Способ назван мокрым из-за того, что измельчение смеси производится в водной среде, на выходе получается шихта в виде водной суспензии — «шлама» влажностью 30 – 50%. Далее шлам поступает в печь для обжига, диаметр которой достигает 4 м, а длина 150 и более метров, см. рис.1.

Обозначения: 1 - дымовая труба; 2 - дымосос; 3 - электрофильтр; 4 - система пылевозврата; 5 - шламовая труба; 6 - пылеулавливающая камера; 7 - цепная завеса; 8 - вращающаяся печь; 9 - головка печи; 10 - топливная форсунка; 11 - рекуператорный холодильник; 12 - решетка горячей камеры; 13 – естественный воздух; 14 - клинкерный транспортер.

Шарики клинкера, которые образуются на выходе из печи, растирают в тонкий порошок (который, собственно, и представ­ляет собой цемент).

При комбинированном способе производится предварительное удаление части воды из смеси — путем фильтрации: это несколько снижает расход топлива, но усложняет процесс.

Основной составляющей оборудования для обжига клинкера является вращающаяся печь, главной частью конструкции является корпус — наклонный цилиндр. Сырьевой материал переме­щается внутри корпуса благодаря его нак­лону и вращению.

Процесс теплообмена во вращающихся печах организован по принципу противотока: движение горячих газов, обра­зующихся при сжигании топлива и оттягиваемых дымососом, проти­воположно нап­равлению движения материала.

На происходящие процессы оказывает влияние множество факторов, таких как общий объем сырья, влажность, химический состав и тонкость помола шлама (или состав и количество муки), расход и калорийность топ­лива, температура и расход вторичного воздуха, неравномерность движения материала и т. п.

Вращающаяся печь в зависимости от характера процессов, протекающих в обжигаемом материале на различных ее участках, условно может быть подразделена на ряд зон — сушки, подогрева, кальцинирования, экзотермических реакций, спекания и охлаждения (загрузка, сушка, подогрев, обжиг, охлаждение и выгрузка).

Общая задача управления вращающейся печью заключается в обеспечении оптимальных тепловых режимов по сечениям печи, регулирования углов наклона и скоростей вращения цилиндра на всех стадиях рабочего процесса.

Сущность процессов получения клинкера состоит в том, что при высокой температуре в сырьевой смеси образуются компонен­ты, обеспечивающие требуемые свойства цемента. Образо­вание клинкера во вращающихся печах завершается при температурах обжигаемого материала около 1450°С — после полного связыва­ния извести.

Главная фазовая составляющая портландцементного клинке­ра — алит — должна достигать в нем 40 – 65%, в зависимости от вида клинкера. Здесь целесообразно указать на используемые сокращенные обозначения оксидов: СаО - С; SiO2 - S; Al2О3 - А; Fe2О3 - F; Na2О - N; Кa2О - К.

По составу алит близок к трехкальциевому силикату C3S, но может также содержать ряд других соединений в виде твердых растворов.

Вторая по содержанию фазовая составляющая клинкера — белит — близка по составу к двухкальциевому силикату C2S и содержит в виде твердых растворов магний, натрий, калий и др.

Третья составляющая клинкера — промежуточное вещество — образуется из той его части, которая представляет рас­плав при высоких температурах.

Остальные фазовые составляющие клинкера — целит — (твер­дые алюмоферритные растворы), трехкальциевый алюминат С3А, а также (в небольших количествах) стеклофаза, периклаз, свобод­ная известь, и др.

Состав клинкера принято характеризовать соотношением ме­жду основными оксидами (модулями) или содержанием мине­ралов. К модульным характеристикам состава относятся:

- гидравлический (основной) m = C/S + А + F;

- глиноземный (или алюминатный) р = A/F;

- кремнеземный (или силикатный) n = S/A + F.

Модульные характеристики удобны тем, что совпадают для клинкера исходной сырьевой смеси, однако содержание минералов полностью они не определяют. Для преодоления этого затруднения введен коэффициент насыщения кремнезема известью КН (в литературе просто «коэффициент насыщения»):

КН = (С – 1,65А – 0,35F – 0,7SO3)/2,8S. (1)

Содержание клинкерных минералов рассчитывается, исходя из предположения о достижении фазовых равновесий в системе СаО - SiO2 -Al2О3 - Fe2О3 и строгом соблюдении количест­вен­ных соотношений в peaкциях образования клинкерных минералов, в соответствии с эмпирическими формулами :

C3S = 4,07(C – 0,7SO3) – 7,6S – 6,72А – 1,42F; (2)

C2S = 8,6S + 5,07A + l,07F – 3,07(C – 0,7SO3); (3)

C3A = 3,04F; C4AF = 2,65(A – 0,64F); CaSO4 = 1,7SO3. (4)

С использованием КН содержание белита и алита опреде­лятся по следующим формулам:

C3S = 3,8(ЗКН – 2)S; C2S = 8,6(1 – КН)S. (5)

Таким образом, теоретически значения содержания минералов в клинкере могут быть определены по известным характеристикам сырьевой смеси. Оперативный контроль качества клинкера представляет определенные трудности, так как процедуры лабораторного анализа минералогического состава достаточно длительны и трудоемки. Кроме того, содержание минералов не определяет однозначно основное качество клинкера - его активность, фактическое значение которой может быть получено только через 28 суток, а экспрессные оценки недостаточно точны. В настоящее время для этой цели разрабатываются методы оценки качества клинкера на основании кос­венных параметров.

Во второй главе представлено формализованное описание математических моделей процесса обжига цементного клинкера.

Так как технологический процесс производства цемента представляется достаточно сложным объектом, включающим самые разнородные газо- и термодинамические, механические, физические, химические и прочие яв­ления, то для формирования модели необходим комбинированный подход с разумным упрощением средств представления (принятием обоснованных «допущений»).

В комплекс процессов, протекающих в рабочем пространстве печи, входят следующие: движение газов; горение топлива; теплообмен в пространстве печи и вблизи поверхности обрабатываемого материала (шлама); процессы теплообмена в массе материала; химические взаимодействия.

Тепловой баланс печи как объекта управления зависит от множества показателей, таких как:

- мощность газовых горелок являющихся основным регули­руемым источником тепловой энергии для всего процесса;

- направление и скорость движения горячих газов в коор­динатах печи;

- потери тепловой энергии через ограждения в окружающую среду;

- вносимые и выходящие тепловые потоки через материал, дымовые газы и технологическое оборудование.

Очевидно, что все перечисленные процессы, так или иначе, связаны между собой и подвержены взаимному влиянию.

Кинетика процессов перемещения потоков в печи можно представить в виде схемы, рис.2. Основу процесса термической обработки (обжига) цемента составляет теплообмен между газами и сырьевым материалом. Так как длина печи существенно больше ее прочих размеров, то из-за турбулентного перемешивания газового потока его параметры приб­лизительно оди­наковы для заданного сечения печи, и с определен­ными оговор­ками объект предполагается одно­мер­ным.

Пространство печи можно подразделить на несколько аналогичных технологических зон, условия внутри которых можно считать однородными. Время нахождения сырья в каждой из зон опреде­ляется скоростью его перемещения. Время действия газов и их свойства определяются температурой и расходом, и может различаться для разных зон.

В установившемся режиме температура газов в каждой из зон определяется условиями теплового баланса и предполагается равномерной в пределах зоны (но в общем случае может различаться в различных зонах).

Поле температуры внутри сырьевого материала в общем случае не однородно и не стационарно, поскольку тепловой обмен свя­зан с условиями молекулярной теплопроводности. Плотность тепло­вого потока через границу раздела в первую очередь зависит от разности температур газа и сырья. Количество поглощенной/выделенной при этом теплоты можно считать пропорциональным массе изменяющегося материала. При переходе в следующую зону полученные пара­метры сырья можно считать его начальной характеристикой для этой зоны.

Изменение температуры газовой составляющей для i-й зоны печи можно представить уравнением теплового баланса:

(6)

где: ср — удельная теплоемкость газовой смеси,

— температура газовой смеси в i-й зоне.

(7)

где:

— расход воздуха в зоне горелок,
— расход подаваемого воздуха, N — количество зон,
— расход отбираемых дымовых газов: