Смекни!
smekni.com

Материалы на основе полимеров (стр. 1 из 3)

Материалы на основе полимеров.


Полимеры — высокомолекулярные соединения, важнейшая составная часть пластмасс. Исходным сырьем для получения полимеров служит природный газ, а также «попутный» газ, сопровождающий выходы нефти и каменноугольный деготь, получаемый при коксовании угля. Состоят они в основном из трех групп химических соединений:
1) связующего (различные смолы, полистирол, фенолоформальдегидные соединения и др.);
2) пластификатора;
3) наполнителя

В качестве вспомогательных веществ в их состав входят также пигменты (красители), стабилизаторы и др

Впервые промышленное производство полимеров началось в 20—30-е гг. ХХ в. , когда в массовом порядке стали производить мочевиноформальдегидные и некоторые другие виды полимеровС внедрением методов полимеризации (начиная с 30-х гг.) были получены новые их виды: поливинилхлорид, полистирол, поливинилацетат и др. Еще позднее появились поликонденсационные пластики: полиуретановые, полиамидные и др
Крупномасштабное производство полимерных материалов и широкое их использование в строительстве началось в 60-е гг. В настоящее время в мире производится более 100 млн. т. полимеров, значительная часть их используется в строительстве. Например в СIIIА и Германии более 25% полимеров идет на изготовление строительных и отделочных материалов. В последнее десятилетие резко возрос выпуск таких важнейших полимеров, как полиэтилен, полипропилен, поливинилхлорид и полистирол. Полимеры все чаще используют как важнейшую составную часть композиционных материалов, Например, полимербетонов, полимерцементных бетонов и т. д.
Широчайшее применение полимеров в строительстве, помимо таких положительных свойств, как антикоррозийность, эластичность, гибкость, технологичность, обусловлено в первую очередь возможностью создавать из них материалы с заданными разработчиками свойствами
Спектр применения полимеров в строительстве весьма широк. Они повсеместно используются для: покрытия полов (линолеум, релин, поливинилхлоридные плитки и др.), внутренней отделки стен и потолков, гидроизоляции и герметизации зданий, изготовления тепло — и звукоизоляционных материалов (поропласты, пенопласты, сотопласты), кровельных и антикоррозионных материалов и покрытий, оконных блоков и дверей, конструкционно-отделочных и ограждающих элементов зданий, лаков, красок, эмалей, клеев, мастик (на полимерном связующем) и для многих других целей

Основные свойства пластмасс как строительных материалов.

Ценным свойством пластических масс является их малая объемная масса. У различных широко применяемых пластмасс, в том числе пористых (поропластов), объемная масса колеблется в пределах от 15 до 2200 кг/м³. Специальные пластики (например, рентгено-непроницаемые с сернокислым барием в качестве наполнителя) могут иметь больший объемный вес.

В среднем объемная масса пластмасс, за исключением поропластов, в 2 раза меньше, чем у алюминия, и в 5-8 раз меньше, чем у стали, меди, свинца. Отсюда совершенно очевидно, что даже частичная замена этих металлов, а также традиционных силикатных материалов пластмассами позволяет значительно снизить вес сооружений, правда, в тех случаях, когда пластические массы применяют в качестве навесных стеновых панелей в зданиях каркасного типа и материалов междуэтажных перекрытий.

Прочностные характеристики пластмасс особенно высоки у пластмасс с листообразными наполнителями. Например, у стеклотекстолита предел прочности при растяжении достигает 2800 кГ/см² (у стали марки Ст. 3 3800-4500 кГ/см²), у дельта-древесины - 3500 и у стекловолокнистого анизотропного материала (СВАМа) - 4500 кГ/см². Из приведенных данных видно, что слоистые пластики в принципе можно применять для несущих нагрузку конструктивных элементов зданий, хотя стоимость их пока весьма высока.

Пределы прочности при сжатии этих материалов также достаточны, например у дельта-древесины 2000, у стеклотекстолита 1600 и у СВАМа 4000 кГ/см².|
Интересны и обнадеживающи с точки зрения применения пластмасс в строительстве соотношения у этих материалов пределов прочности при сжатии и растяжении, а именно: у дельта-древесины 0,7, у стеклотекстолита 0,6, у СВАМа 0,9, тогда как (для сравнения) у сосны это отношение 0,4, а у бетона 0,1, у стали 1.

Таким образом, у пластмасс пределы прочности при сжатии и растяжении достаточно высоки, превосходя в этом отношении многие строительные материалы силикатной группы (кирпич, бетон).

Прочностные характеристики пористых пластмасс (например, мипоры) очень невысоки, но удовлетворяют требованиям, предъявляемым к этим утеплительным материалам.
Важнейшим показателем для конструктивных материалов является коэффициент конструктивного качества материала, т. е. коэффициент, получаемый от деления прочности материала на его объемную массу. Внедрение в строительстве материалов с высоким коэффициентом конструктивного качества предопределяет правильное решение одной из основных его задач - снижение веса зданий и сооружений.

Коэффициент конструктивного качества кирпичной кладки составляет 0,02 (самый низкий из всех строительных материалов), у цементного бетона марки 150 - 0,06, стали марки Ст. 3 - 0,5, сосны - 0,7, дюралюминия - 1,6, СВАМа - 2,2 и, наконец, дельта-древесины - 2,5. Таким образом, по коэффициенту конструктивного качества слоистые пластики являются непревзойденными до сих пор материалами.|
Теплопроводность плотных пластмасс колеблется в пределах от 0,2 до 0,6 ккал/м·ч·град. Наиболее легкие пористые пластмассы имеют теплопроводность всего лишь 0,026, т. е. их коэффициент теплопроводности приближается к коэффициенту теплопроводности воздуха. Очевидно, что низкая теплопроводность пластмасс позволяет широко использовать их в строительной технике.

Ценным свойством пластических масс является химическая стойкость, обусловленная химической стойкостью полимеров и наполнителей, которые использованы для изготовления пластмасс. (Химическую стойкость следует понимать в широком смысле этого термина, включая и стойкость к воде, растворам солей и органическим растворителям.) Особенно стойки к воздействию кислот и растворов солей пластмассы на основе политетрафторэтилена, полиэтилена, полиизобутилена, полипропилена, полистирола, поливинилхлорида.

Химически стойкие пластмассы можно использовать при сооружении предприятий химической промышленности, канализационных сетей, а также для изоляции емкостей при хранении агрессивных веществ.

Ценным свойством пластмасс является их способность окрашиваться в различные цвета органическими и неорганическими пигментами. При подборе красителей и пигментов для пластмасс приходится, естественно, учитывать возможное химическое взаимодействие между полимером и красителем.

Высокая устойчивость пластмасс к коррозионным воздействиям, ровная и плотная поверхность изделий, получаемая при формировании, также позволяют в ряде случаев отказаться от окрашивания. К качеству окраски пластических масс, применяемых в виде строительных материалов, должны быть предъявлены значительно более высокие требования, чем к качеству окраски пластмасс, используемых, например, в машиностроении. Это объясняется тяжелыми условиями работы строительных материалов и продолжительным сроком службы зданий. Покраска их должна быть высокоустойчивой к атмосферным воздействиям, в частности к особенно активному фактору - действию света.

Большой интерес представляет низкая истираемость пластмасс, что открывает большие перспективы для применения пластических материалов в качестве одежды полов.
Испытания полов на основе полимеров дали хорошие результаты. Так, истираемость поливинилхлоридных плиток для полов составляет 0,05, линолеума глифталевого 0,06 г/см².

Весьма ценным свойством некоторых пластических масс без наполнителя является их прозрачность и высокие оптические свойства. Многие из них, называемые поэтому органическими стеклами, можно при снижении их стоимости достаточно широко применять как прозрачные материалы с более высокими свойствами, чем силикатное стекло.|
Органические стекла, отличающиеся высокой прозрачностью и бесцветностью, можно легко окрашивать в различные цвета. Они пропускают лучи света в широком диапазоне волн, в частности ультрафиолетовую часть спектра, причем в этом отношении превосходят в десятки раз обычные стекла. Следует отметить их значительно меньшую объемную массу. Так, объемная масса «стекла» из полистирола 1060 кг/м³, тогда как у обычного оконного 2500 кг/м³.

Коэффициенты преломления полиметилметакрилатных и полистирольных «стекол» весьма близки к коэффициенту преломления обычного оконного стекла (1,52). Прозрачность органических стекол по сравнению с принятой за 100 у алмаза колеблется в пределах от 83 до 94 (у полиметилметакрилата).
Органические стекла отличаются легкостью формирования, так как требуется лишь незначительный нагрев. Достаточно высокие прочностные характеристика этих стекол позволяют широко применять их в строительстве.

Особенно ценным свойством пластмасс является легкость их обработки - возможность придавать им разнообразные, даже самые сложные формы. Бесстружечная обработка этих материалов (литье, прессование, экструзия) значительно снижает стоимость изготовляемых изделий.

Столь же целесообразна по технологическим и экономическим соображениям станочная переработка пластмасс (пиление, сверление, фрезерование, строгание, обточка и др.), позволяющая полностью использовать стружку и отходы (при применении термопластичных полимеров).|
Возможность склеивания пластмассовых изделий как между собой, так и с другими материалами (например, с металлом, деревом) открывает большие перспективы для изготовления различных клееных комбинированных строительных изделий и конструкций.
Легкая свариваемость материалов из пластмасс (например, труб) в струе горячего воздуха позволяет механизировать некоторые виды строительных работ, в частности санитарно-технические, и значительно удешевить их.