Смекни!
smekni.com

Проектирование свайного,ленточного и столбчатого фундамента (стр. 3 из 5)

Находим нижнюю границу сжимаемой толщи и вычисляем осадку:

где σzpi- среднее значение дополнительного вертикального нормального напряжения в i-м слое грунта, равное полусумме напряжений на верхней zi-1 и нижней zi границах слоя, кПа;

hi, Ei-соответственно толщина, м, и модуль деформации, кПа, i-го слоя грунта;

n- число слоев, на которое разбито основание в пределах сжимаемой толщи.

Граница сжимаемой толщи находится на глубине z=5,40 м, так как здесь

σzp≤0.2σzg.

Получим величину осадки:

Расчетное значение осадки основания свайного фундамента меньше предельного

S=2.76 см <Su=8 см.

Условие расчета основания по деформациям выполняется.

3.4.Производим расчет элементов фундамента по прочности

3.4.1. Конструирование фундамента.

Толщина стенки стакана в плоскости действия момента (вдоль оси ОХ) dq > 0,2·1,0 = 0,2 м; из плоскости момента, не менее 150 мм. Тогда размеры подколенника с учетом размеров колонны, толщины стенок, стакана и принятых зазоров в плане luc и buc должны составлять:

luc > 1.0+ 2dg + 0,15 = 1,0+2*0,12+0,15 = 1,55 м;

buc > 0.5 + 2dg + 0,15 = 0,5+2*0,15+0,15=0,95 м.

С учетом модуля 300 мм 1uс = 1,8 м, buc = 1,2 м.

Предположим, что плитная часть фундамента состоит из одной ступени высотой hi= 0,3 м. Рабочая высота нижней ступени при защитном слое бетона 35 мм и диаметре арматуры 20 мм:

h01 =300-35-20/2 =255 мм.

где h01 –рабочая высота бетона.

Определяем допускаемый вынос нижней ступени Сlmax=ho1·K

где К - определяется по таблице, принимая бетон класса В15.

где lc = 1м – высота сечения колонны;

b0 = 0,51м –толщина стены.

При p=390 кН для четвертого случая и В15 значение К1=2.2, тогда:

Clmax=h01·K = 0,255*2.2 = 0,561 м.

Фактический вынос нижней ступени вдоль стороны l составляет:

=(3,6-1,8)/2=0,9 м > 0.561 м

Так как Clmaxlfact принимаем две ступени: принимаем ширину первой ступени 450 мм, второй- 450 мм.

Cbmax=h01·K = 0,255*2.6 = 0,663 м

Cbmaxbfact , целесообразно принять две ступени, первая шириной 450 мм и вторая 300 мм .

Армирование подошвы фундамента:

Определяем количество рабочей арматуры вдоль длины подошвы в плоскости действия момента сразу на всю ширину подошвы. Вычисляем эксцентриситет:

eI3=

Расчётные сечения принимаем по граням подколонника и колонны (см. рис. ниже).

Сечение 1-1

Вылет консоли С1=450м

Рабочая высота h01=255 мм

Момент от реактивного давления грунта:

Площадь арматуры А-III при Rs=365000 кПа:

Назначаем шаг рабочих стержней 200 мм. На ширину подошвы b=2,7м укладывается 2,7/0,2=13 стержней.

Расчетный диаметр одного стержня



Минимальный диаметр рабочей арматуры сеток подошв принимается равным 12 мм.

Марка сетки подошвы фундамента 2С


4. ПРОЕКТИРОВАНИЕ СВАЙНЫХ ФУНДАМЕНТОВ.

4.1. Выбор вида сваи и определение её размеров.

В качестве исходных данных для проектирования свайных фундаментов примем исходные данные, использованные для расчета фундамента стаканного типа на естественном основании (см. раздел 3).

В рассматриваемых местных условиях для проектируемого здания можно использовать практически все виды свай. В качестве варианта запроектируем фундаменты из забивных железобетонных цельных свай квадратного сечения с ненапрягаемой арматурой и поперечным армированием по ГОСТ 19804.1-79*. Размеры поперечного сечения сваи принимаем 30 х 30 см.

Высоту ростверка назначаем 1,5 м. Тогда при отметке планировки -0,150 отметка подошвы будет -1,650, а толщина дна стакана 0,5м, что больше минимальной, равной 0,25. Так как на ростверк действуют горизонтальные силы, и моменты предусматриваем жесткое сопряжение ростверка со сваями путем заделки свай в ростверк на 500мм. Из них 400мм составляют на выпуски арматуры, а 100мм непосредственная заделка. Тогда условная отметка головы сваи будет -1,150.

Отметку острия сваи назначаем в зависимости от грунтовых условий строительной площадки. В качестве несущего пласта выбираем суглинок красновато-бурый, кровля которого находится на глубине 8,0 м. Сваи заглубляем в этот слой на 1,0 м, тогда отметка нижнего конца сваи будет -9,150.

Длину сваи определяем как разность между отметками головы и нижнего конца:

L=9,150-1,150 = 8м.

По ГОСТ 19804.1-79* марка сваи С 8-30. Так как свая опирается на сжимаемые грунты, то она относится к висячим.


4.2. Определение несущей способности сваи.

Несущей способностью сваи Fd называется расчетная несущая способность грунта основания одиночной сваи. Это максимальное усилие, которое может воспринять свая без разрушения грунта, контактирующего с ее поверхностью.

В расчетном методе несущая способность висячей сваи является суммой сил расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности:

где γс- коэффициент условий работы сваи в грунте, принимаемый γс =1;

R - расчетное сопротивление грунта под нижним концом сваи,

R = 10100 кПа;

А - площадь опирания сваи на грунт, 0,3 х 0,3 = 0,09 м2;

U- наружный периметр поперечного сечения сваи, U= 4 х 0,3 = 1,2м;

fi - расчетное сопротивление i -го слоя грунта основания по боковой поверхности сваи, кПа;

hi толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

γcR γcf- коэффициенты условий работы грунта соответственно под

нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетное сопротивление грунта.

Для определения fi грунт на боковой поверхности сваи разделяем на однородные слои толщиной не более 2м. Находим среднюю глубину расположения слоя грунта (расстояние от середины слоя до уровня природного рельефа zi). В зависимости от показателя текучести и наименования определяем значения расчетных сопротивлений грунта на боковой поверхности:

h1=2,0м z1=2.5м f1=45кПа

h2=2,0м z2=4,5м f2=54,5кПа

h3=1.5м z3=6.25м f3=58,5 кПа

h4=1.5м z4=7,0м f4=60 кПа

h5=1.0м z5=7.5м f5=61,5 кПа

4.3. Размещение сваи под ростверком и проверка нагрузок.

Определяем нагрузку, допускаемую на сваю.

где γК-коэффициент надежности, учитывающий точность метода определения несущей способности одиночной сваи; при определении Fd расчетом значение принимается равным 1,4.

Количество свай вычисляем по формуле

где

-максимальная для всех сочетаний сумма расчетных вертикальных нагрузок в обрезе фундамента, кН;