Наружные стены выполняются из пористого кирпича фирмы ЗАО “Победа/Knauf”. По адресу http://knauf.hst.ru в интернете можно найти полное описание продукции этой фирмы. Исходя из географического положения проектируемого здания, на этом сайте вы можете получить данные теплотехнического расчета и возможные варианты конструкции наружной стены. Так же мы рассчитываем толщину утеплителя чердачного перекрытия, которым является экструзированный пенополистирол с g=600кг/м3.
Cтена с применением блока 2NF и лицевого кирпича 640мм (655мм)
2NF+ЛК
Область применения:
◦ Многоэтажное строительство (неармированная кладка до 16 этажей)
◦ Высотное строительство (армированная кладка более 16 этажей)
◦ Среднеэтажное строительство
◦Малоэтажное строительство
Тип здания:
◦ Каркасно-монолитный (самонесущая стена).
◦ Кирпичный (несущая стена, до 16 этажей).
Основные преимущества:
◦ Повышенные теплотехнические свойства
◦ Скорость возведения
◦ Экологичность
◦ Стена является несущей конструкцией
◦ Долговечность конструкции
◦ Легкость перевязки с внутренними стенами
◦ Облегченная стеновая конструкция
◦ Возможна широкая цветовая гамма лицевой керамики
◦ Высокая шумоизоляция
Состав чердачного перекрытия:
◦ гидроизоляционный ковер (4 слоя рубероида), δ=0,008м, λ=0,17
◦ цементно-песчаная стяжка, раствор М100, δ=0,05м, λ=0,93
◦ керамзит, g=600кг/м3, δ=0,15м, λ=0,2
◦ экструзированный пенополистирол, λ=0,04
◦ пароизоляция (1 слои рубероида на битумной мастике), δ=0,007м, λ=0,27
◦ цементно-песчаная стяжка, раствор М100, δ=0,02м, λ=0,93
◦ ж/б плита, δ=0,22м, λ=2,04
Исходные данные для расчета
Район строительства — Ленинградская область.
Расчетная температура, равная температуре наиболее холодной пятидневки обеспеченностью 0,92: t н = -26 оС.
Расчетная температура внутреннего воздуха: t в = 20 оС.
Относительная влажность воздуха: 60%.
Влажностный режим помещений — нормальный.
Коэффициент теплоотдачи для внутренних стен aв = 8,7 Вт/м2·˚С
Коэффициент теплоотдачи для наружных стен в зимних условиях aн = 23 Вт/м2·˚С
Коэффициент, зависящий от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху: n = 1.
Нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающих конструкций Δtн = 6 оС.
Определение требуемого сопротивления теплопередаче Roтр, исходя из условий энергосбережения через градусосутки отопительного периода.
ГСОП = (t в – t от. пер.) × z от. пер.
где: tв – расчетная температура внутреннего воздуха, °С, принимаемая согласно ГОСТ 12.1.005-76 и нормам проектирования соответствующих зданий и сооружений (tв = 20°С);
t от. пер. = -4.2°С – средняя температура периода со средней суточной температурой воздуха ≤ 8°С /1/;
z от. пер. = 202 суток – продолжительность периода со средней суточной температурой воздуха ≤ 8°С /1/.
ГСОП = (20 – (-4,2)) × 202 = 4888,4 °С×сут
Определение требуемого сопротивления теплопередаче Roтр по санитарно-гигиеническим и комфортным условиям.
Roтр = n × (t в – t н) / (Dtн × aв)
где: n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху (для наружных стен n = 1, для чердачного перекрытия n = 0,9);
t н = - 26°С – расчетная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92;
Dtн– нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, °С, для наружных стен Dt=4, для чердачного перекрытия Dt=3.
aв = 8,7 Вт/м2×°С – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции.
Наружные стены
Roтр = 1 × (20 – (-26)) / (4 × 8,7) = 1,3218 м2×°С/Вт,
Roтр =3,11 через ГСОП по таблице, м2×°С/Вт.
Чердачное перекрытие
Roтр = 0,9 × (20 – (-26)) / (3 × 8,7) = 1,5862 м2×°С/Вт,
Roтр =4,07 через ГСОП по таблице, м2×°С/Вт.
Проверка сопротивления теплопередачи проектируемой конструкции.
Ro = 1/aв + S (di / li) + 1/aн
где: aв = 8,7 Вт/м2×°С – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции;
di – толщина i-го слоя, м;
li – расчетный коэффициент теплопроводности материала i-го слоя;
aн = 23 Вт/м2×°С – коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции.
Проверяем достаточность сопротивления теплопередачи для внешних стен.
Ro = 1 / 8,7 + 0,64 / 0,93 + 1 / 23 = 3,5268 м2×°С/Вт, что больше Roтр=3,11 м2×°С/Вт.
Находим толщину утеплителя для чердачного перекрытия.
d=(4,07 - (1 / 8,7 + 0,008 / 0,17 + 0,05 / 0,93 + 0,15 / 0,2 + 0,007 / 0,27 + 0,002 / 0,93 + 1 / 23 + 0,22 / 2,04)) • 0,04 = 0,1169 м
Принимаем толщину утеплителя 120 мм.
4. Противопожарные мероприятия
Застройка проводится в соответствии с генеральным планом населенного места. Деревянные стропила и обрешетки покрытий здания имеют огнезащиту (краски, пропитки, составы и т.п.). Эвакуация людей предусмотрена как по лестничной клетке, так и по внешней противопожарной лестнице. Электрооборудование и молниезащита дома спроектирована в соответствии с требованиями ПУЭ и РД 34.21.122-87. Жилые комнаты оборудованы автономными автоматическими противопожарными извещателями.
5. Инженерное оборудование здания
Система водоснабжения локальная, производится из скважины водяным насосом. Вся система разводки и нагрев горячей воды производится в котельной, расположенной в объеме цокольного этажа (см. план цокольного этажа) В качестве источника тепла для систем горячего водоснабжения и отопления принят универсальный двухконтурный котел CTC 1100 Maxi (77kW;18kW электротэны) жидкотопливной B-20. В качестве нагревательных приборов приняты стальные панельные радиаторы "HENRAD". Все трубопроводы выполняются из металлопластиковых труб "HENCO". Теплоноситель в системе отопления - низкозамерзающая жидкость "Аргус-хатдип" с температурами: подающей магистрали +85°C, обратной - +70°C, в системе отопления полом, соответственно: +60°C - +50°C. Схема системы позволяет осуществлять автоматическую дифференцированную регулировку и поддержание температуры посредством термостатов "HERZ", устанавливаемых в каждом основном помещении, а также общее программирование температурного режима здания с помощью электронного контроллера котла. Система закрытая, с принудительной циркуляцией.
В системе предусмотрена возможность заливки через сливной кран на котле и подпитки от водопровода (при этом автоматически исключается возможность попадания жидкости из системы в водопровод). Разводка выполняется по древовидной схеме (с уменьшением диаметров трубопроводов при последовательных разветвлениях). Применяется нижняя подводка к радиаторам. Горизонтальные участки трубопроводов прокладываются в конструкции пола. Вертикальные и наклонные участки трубопроводов прокладываются в конструкции стен (в штрабах) либо по стенам (в этом случае труба должна закрепляться на стене с помощью фиксаторов, расположенных на расстоянии 0.4 - 1.0м в зависимости от диаметра и расположения трубы).
Рекомендуемая последовательность монтажа:
Подготовка пола в помещениях, отапливаемых полом (чистовые стяжки с допуском по уровню не более ±5mm).
Подготовка ниш для распределительных шкафов, штраб и отверстий в конструкциях стен и перекрытий.
Сборка радиаторов.
Сборка распределительных коллекторов.
Установка распределительных шкафов, прокладка центральных магистралей.
Установка радиаторов, установка распределительных коллекторов в шкафах.
Прокладка и подключение ветвей радиаторного отопления.
Установка дистанционных датчиков отопления полом.
Монтаж и подключение нагревательных плоскостей.
Монтаж и подключение отопительного котла.
Заливка и запуск системы.
Проверка герметичности и наладка системы (удаление воздуха, установка ручных регулировок).
Отключение системы и заливка стяжек нагревательных плоскостей (при этом змеевики должны быть холодными и находиться под давлением).
Установка термоголовок на радиаторах (желательно после завершения отделки помещений).
Технические требования:
Для горизонтальных участков трубопроводов недопустимы изгибы ("волны"), выпуклые вверх (во избежание завоздушивания).
Горизонтальные участки подводки к змеевикам нагревательных плоскостей пола необходимо располагать на уровне самих змеевиков.
Каждый змеевик должен быть выполнен из одного отреза трубы без сочленений.
Предельно допустимый радиус изгиба труб не менее 5 диаметров (при использовании изгибных пружин - не менее 3). Для труб H026 соответствующие цифры: 8 и 4.