Уложенный бетон не должен подвергаться воздействию нагрузок и сотрясений. Движение людей и транспорта, а также работа со свежеуложенного бетона допускается лишь после достижения бетоном прочности более 1,5 МПа. Прочность бетона зависит от качества его составляющих, способа приготовления, транспортирования и укладки, условий твердения и ухода за бетоном.
На строительной площадке необходимо иметь журнал бетонирования, в который регулярно заносят все сведения о бетонировании – начало бетонирования, класс бетона, температура окружающего воздуха, температура бетона, время полива его водой и др.
Класс бетона будет признан заданным, если при испытании не менее трех образцов, выдерживавшихся в аналогичных условиях, прочность бетона в этой серии не будет ниже 85% требуемой прочности.
Необходимо отметить, что в условиях жаркого и сухого климата контроль выдерживания бетона осуществляет строительная лаборатория, которая дает необходимые рекомендации по режимам выдерживания бетона.
3.12. Распалубливание конструкций
В комплексном технологическом процессе по возведению монолитных конструкций распалубливание (снятие опалубки) является одной из важных и трудоемких операций. Распалубливание конструкций должно выполняться осторожно, чтобы избежать повреждения бетона и обеспечить сохранность опалубки для последующего использования.
Разборка опалубки – распалубливание бетонных и железобетонных конструкций производят после достижения бетоном необходимой прочности. Боковые элементы опалубки, не несущие нагрузку от массы бетона (боковые щиты фундаментов, балок и стен), а только от сил бокового распора, можно разбирать после того, как бетон отвердеет настолько, что его поверхность и кромки углов не будут подвергаться повреждению после распалубливания. При температуре 12...18ºС такое положение наступает через 2...3 суток. Эти сроки можно устанавливать на месте в зависимости от вида и класса цемента и температурно-влажностных условий твердения бетона.
Основные, несущие элементы опалубки, воспринимающие давление уложенной бетонной массы, снимают только по достижении бетоном прочности, обеспечивающей сохранность конструкции.
Опалубку несущих элементов конструкций можно снимать в следующие сроки: плиты пролетом до 2 м – при достижении 50%-й проектной прочности; плиты, своды, балки и прогоны пролетом от 2 до 6 м – 70%-й проектной прочности; несущие конструкции пролетом более 6 м – 80%-й проектной прочности.
Минимальная прочность бетона незагруженных монолитных конструкций при распалубливании вертикальных поверхностей из условия сохранения формы – 0,2…0,3 МПа.
Удалению несущей опалубки должно предшествовать плавное и равномерное опускание (раскружаливание) поддерживающих конструкций – лесов или подмостей. Для этого опускают опорные домкраты или ослабляют парные клинья. Запрещается рубить или спиливать нагруженные стойки. Опоры, поддерживающие опалубку балок, прогонов, ригелей опускают одновременно по всей длине элемента.
Опорные стойки, поддерживающие опалубку междуэтажных перекрытий и находящиеся непосредственно под этими перекрытиями удалять не разрешается. Допускается частичное удаление стоек нижележащего перекрытия. Под всеми балками и прогонами нижележащего перекрытия пролетом 4 м и более рекомендуется оставлять несущие стойки (стойки безопасности) на расстоянии одна от другой не более 3 м. Опорные стойки остальных нижележащих перекрытий разрешается удалять полностью лишь при достижении бетоном проектной прочности.
Крупнощитовую опалубку массивов, стен и фундаментов снимают кранами, щиты опалубки предварительно отрывают от забетонированной поверхности с помощью рычажных приспособлений. Перед повторным использованием элементы опалубки осматривают, очищают от остатков бетона, при необходимости ремонтируют и смазывают палубу.
Распалубливание производят в определенной последовательности, устанавливаемой проектом производства работ. Распалубливание при конструкциях на обычных цементах начинают не ранее чем через 7...14 сут в летних условиях. Сокращение сроков выдерживания бетона и более раннего распалубливания обычно достигают за счет применения быстротвердеющих цементов, и мероприятий, ускоряющих распалубливание, – вибрирования, вибровакуумирования и термообработки.
4. Особенности технологии бетонных работ
в экстремальных условиях
4.1. Специфика и методы зимнего бетонирования
Понятие «зимние условия» в технологии монолитного бетона и железобетона несколько отличается от общепринятого – календарного.
Зимними считаются условия бетонирования при установлении среднесуточной температуре наружного воздуха не выше 5ºС или при опускании в течение суток минимальной температуре ниже 0ºС. Подобные климатические условия продолжаются на территории России в среднем 6…7 мес. в году.
Формирование прочностных характеристик бетона в зимних условиях имеет свои особенности. Основной проблемой является замерзание в начальный период структурообразования бетона несвязной воды затворения.
При отрицательных температурах не прореагировавшая с цементом вода переходит в лед и не вступает в химическое соединение с цементом. Вода, тонким слоем находящаяся на поверхности крупного заполнителя и арматуры, в процессе замораживания свежеуложенного бетона образует вокруг арматуры и зерен заполнителя ледяные пленки. Эти пленки благодаря притоку воды из менее охлажденных зон бетона, увеличиваются в объеме и отжимают цементное тесто от арматуры и заполнителя, препятствуя необходимому сцеплению с цементным тестом и созданию плотной структуры после оттаивания бетона.
В результате этих процессов прекращается реакция гидратации и, следовательно, бетон не твердеет. Одновременно в бетоне развиваются значительные силы внутреннего давления, вызванные увеличением (примерно на 9%) объема воды при переходе ее в лед. При раннем замораживании бетона его неокрепшая структура не может противостоять этим силам и нарушается. При последующем оттаивании замерзшая вода вновь превращается в жидкость, и процесс гидратации цемента возобновляется, однако разрушенные структурные связи в бетоне полностью не восстанавливаются. Конечная прочность бетона оказывается ниже на 15…20% прочности бетона, выдержанного в нормальных условиях твердения, уменьшается его плотность, стойкость и долговечность.
Теоретически и практически доказано, что в замерзшем бетоне после его оттаивания будет продолжаться процесс набора прочности до заданной марочной при условии набора им к моменту замерзания так называемой критической прочности. Поэтому цель зимнего бетонирования – предохранение бетона от замерзания в ранние сроки, обеспечение надлежащих условий его твердения, приводящих к набору критической прочности.
Если бетон до замерзания приобретает необходимую начальную прочность, то все упомянутые выше процессы не оказывают на него неблагоприятного воздействия. Минимальную прочность, при которой замораживание для бетона не опасно, называют критической. Критерий морозостойкости – критическая прочность, выраженная в % от проектной прочности в возрасте 28 сут, при достижении которой бетон может быть заморожен без снижения его прочностных показателей после продолжения твердения при наступлении положительных температур.
Величина нормируемой критической прочности зависит от факторов, включающих тип монолитной конструкции, класс примененного бетона, условия его выдерживания, срока приложения проектной нагрузки к конструкции, условий эксплуатации и составляет:
* для бетонных и железобетонных конструкций с ненапрягаемой арматурой – 50% проектной прочности для В7,5...В10, 40% для B12,5... B25 и 30% для В 30 и выше;
* для конструкций с предварительно напрягаемой арматурой – 80% проектной прочности;
* для конструкций, подвергающихся попеременному замораживанию и оттаиванию или расположенных в зоне сезонного оттаивания вечномерзлых грунтов – 70% проектной прочности;
* для конструкций, нагружаемых расчетной нагрузкой, – 100% проектной прочности;
* для ненесущих конструкций – критическая прочность должна быть не ниже 5 МПа (50 кгс/см2).
Продолжительность твердения бетона и его конечные свойства в значительной степени зависят от температурных условий, в которых выдерживают бетон. По мере повышения температуры увеличивается активность воды, содержащейся в бетонной смеси, ускоряется процесс ее взаимодействия с минералами цементного клинкера, интенсифицируются процессы формирования коагуляционной и кристаллической структуры бетона. При снижении температуры, наоборот, все эти процессы затормаживаются, и твердение бетона замедляется.
Основной целью зимнего бетонирования является обеспечение условий, при которых монолитные железобетонные конструкции в короткие сроки с наименьшими затратами могли бы набрать критическую прочность по морозостойкости или требуемую для восприятия проектных нагрузок. Для этого применяют специальные способы приготовления, подачи, укладки и выдерживания бетона.
Задача всех существующих и разрабатываемых методов зимнего бетонирования – достижение бетоном критической, а для большинства несущих конструкций прочности 50...70%-й от марочной в возможно короткие сроки, при соответствующем технико-экономическом обосновании принятых решений и при обязательном выполнении следующих мероприятий:
* применение бетонных смесей с водоцементным отношением до 0,5;
* приготовление бетона на высокоактивных и быстротвердеющих портланд- и шлакопортландцементах, на других вяжущих, в частности магнезиальном, обладающим рядом совершенно уникальных свойств, в том числе твердением при отрицательных температурах;