Период остывания конструкции после прогрева зависит от внешних факторов – температура наружного воздуха, скорость ветра, степень тепловой изоляции конструкции и в прямой связи с максимальной температурой прогрева, может продолжаться 2…4 ч. За этот период, вплоть до замерзания конструкции, будет продолжаться процесс набора бетоном прочности свыше расчетной критической. Разность температуры наружных слоев бетона и наружного воздуха в абсолютных значениях не должна превышать 20…50ºС в зависимости от конструктивных особенностей.
Важной особенностью всех применяемых методов термообработки бетона является необходимость выполнения подготовительных работ при зимнем бетонировании. До укладки бетонной смеси в опалубку необходимо удалить из нее снег, наледь с арматуры, отогреть промороженное основание и стыки до положительной температуры или иногда требуемой по расчету. Кроме этого, желательно не только укладывать бетонную смесь в утепленную и разогретую опалубку, но и вести прогрев во время укладки в опалубку бетонной смеси, не делая никаких технологических перерывов, влекущих потерю бетоном аккумулированной начальной тепловой энергии. Отогретая опалубка и тепловая энергия бетона имеющего положительную температуру, совместно с экзотермией цемента позволяют быстро, в сокращенные сроки, разогреть бетонную смесь до изотермической температуры.
Качество конструкций, бетонируемых в зимних условиях с применением методов искусственного прогрева, в значительной степени зависит от режимов нагрева бетона. На выбор режимов оказывают влияние многочисленные факторы, характеризующие как состав бетона, так и всю конструкцию в целом, а также требования к конечной прочности бетона и температура окружающей среды.
В зависимости от перечисленных факторов различают следующие типовые схемы прогрева.
Электротермос применяют для довольно массивных конструкций с модулем поверхности 3 £ Мп £ 8, остывающих в течение длительного времени. Конструкцию разогревают до некоторой расчетной температуры, а затем ей позволяют остывать до конечной (часто нулевой) температуры, по достижению которой должна быть получена требуемая прочность.
Изотермический режим с остыванием применяют для прогрева конструкций с модулем поверхности 8 £ Мп £ 15. Этот режим представляет собой комбинацию из двух режимов (a и в). При таком режиме необходимую прочность бетон приобретает к моменту остывания, в тепловом балансе учитывают подъем температуры, изотермический прогрев и остывание.
Изотермический режим применяют для немассивных конструкций с Мп >12. Конструкцию разогревают до заданной температуры и изотермически выдерживают при этой температуре. Продолжительность изотермического режима и требуемая прочность бетона при таком режиме должна быть достигнута к моменту окончания изотермического прогрева, прирост прочности во время остывания не учитывается.
Импульсный режим используют при модулях поверхности до 8. Осуществляют периодическое включение и отключение напряжения, подаваемого на электроды или нагревательные элементы. Режим позволяет экономить электроэнергию, так как в период пауз вследствие теплопроводности бетона происходит перераспределение тепла по сечению конструкции, что обеспечивает более равномерное температурное поле. Продолжительность импульсов и пауз зависит от заданной скорости разогрева, температуры изотермического прогрева, модуля поверхности, подводимого напряжения и должна устанавливаться опытным путем.
Саморегулирующийся режим. Режим возможен при прогреве конструкций с Мп ³ 8. При этом режиме напряжение в цепи остается постоянным на протяжении всего режима термообработки, т. е. прогрев осуществляют на одной ступени напряжения трансформатора.
Ступенчатый режим применяют для периферийного прогрева массивных монолитных конструкций с Мп £ 5, а также немассивных предварительно напряженных конструкций.
Нагрев производят сначала до промежуточной температуры, обычно порядка 50ºС и поддерживают на этом уровне 1...3 ч, затем осуществляют быстрый подъем до максимально допустимой для данной конструкции температуры и выдерживание при ней до приобретения бетоном требуемой прочности. При ступенчатом режиме прогрева начальная скорость подъема температуры не должна превышать 20ºС, а последующая – не более 30ºС/ч.
Разогрев – один из наиболее ответственных периодов прогрева. При высоких скоростях разогрева вследствие внутреннего давления в бетоне происходят структурные разрушения за счет быстрого расширения защемленного воздуха и образующихся паров воды, собственных температурных расширений твердых частиц и интенсивного испарения влаги с поверхности бетона при повышенных температурах.
С увеличением скорости подъема температуры вследствие различия коэффициентов линейного и объемного расширения отдельных компонентов бетона, могут значительно возрастать общие, внутренние деформации, особенно расширения, что приводит к ухудшению его свойств, и даже к частичному или полному разрушению конструкции.
Поэтому нормативными документами установлены следующие максимально допустимые скорости повышения температуры бетона:
5...8ºС/ч при модуле поверхности 2 £ Мп £ 6;
не более 10ºС/ч при 6 £ Мп £ 20.
15ºС/ч для каркасных и тонкостенных конструкций малой протяженности (не более 6 м).
Максимально допустимые температуры электропрогрева бетона в монолитных конструкциях не должны превышать: для быстротвердеющего портландцемента – 60ºС; для портландцемента и шлакопортландцемента – 80ºС, а при прогреве конструкций с жесткой заделкой узлов сопряжений, а также при периферийном электропрогреве конструкций с Мп > 6 температура прогрева не должна превышать 40ºС.
При резком остывании бетона достаточной прочности и обладающего свойствами хрупкого тела, температурные градиенты создают в конструкции дополнительные напряжения, которые могут вызвать образование необратимых микродефектов. Поэтому скорость остывания не должна превышать:
12ºС/ч для конструкций с модулем поверхности Mп ³ 10;
5ºС/ч для конструкций с 6 ³ Mп ³ 10;
2...3ºС/ч для конструкций с Мп < 6;
15ºС/ч для густоармированных каркасных конструкций с Мп >10.
Опалубку и теплозащиту прогретых конструкций можно снимать при остывании бетона до 0...5ºС. При этом разность температур открытых поверхностей бетона и наружного воздуха при распалубке не должна превышать: 20ºС для конструкций с Мп < 6 и 30 ºС для конструкций с Mп > 6.
Если условия не могут быть обеспечены, то поверхность бетона после распалубливания необходимо обязательно утеплить.
Положительное влияние на качество бетона, подвергаемого термообработке, оказывает предварительное выдерживание его до начала прогрева в течение 2...6 ч при нормальной или низкой положительной температуре до +5ºС.
Движение электрического тока возможно только при наличии жидкой фазы бетона. В процессе прогрева количество влаги уменьшается, электрическое сопротивление возрастает, падает сила тока и уменьшается количество выделяемого тепла. Поэтому обычно увеличение силы тока осуществляют за счет регулирования напряжения при помощи трансформатора. Чтобы избежать такого регулирования целесообразно подготавливать автоматический режим регулирования процесса или применять, по возможности метод электротермоса.
Современные бетоны насчитывают десятки наименований. Это особопрочные, пористые, гидроизолирующие и многие другие бетоны. По некоторым показателям они приблизились к природному камню и даже металлу.
Используя полимерные смолы в качестве вяжущего, получают более эластичный материал повышенной прочности (полимербетон). Многообразие полимерных смол, заполнителей и наполнителей, а также технологий изготовления позволяет получить много разновидностей полимербетонов со специфическими и в ряде случаев уникальными свойствами. Это высокие прочностные характеристики, воздухо- и водонепроницаемость, высокие химическая и радиационная стойкость, демпфирующие, диэлектрические и другие характеристики при ускоренном нарастании прочности, что особенно важно для монолитного строительства.
Выгодно отличается от традиционного бетона фибробетон, поскольку он имеет в несколько раз более высокие прочность на растяжение и срез, ударную и усталостную прочность, трещиностойкость, морозостойкость, водонепроницаемость, сопротивление кавитации, жаропрочность и пожаростойкостъ. Наиболее высокие технико-экономические показатели имеет фибробетон на фибре из стали и щелочестойкого стекла.
Перспективно применение легких бетонов. Например, полистиролбетон с заполнителем из гранул вспененного полистирола может служить теплоизоляционным (для теплоизоляции покрытий) и конструкционно-теплоизоляционным (для изготовления стеновых блоков малоэтажных жилых домов) материалом.
За последние годы технический уровень возведения бетонных и железобетонных конструкций значительно возрос. Широко применяется многооборачиваемая опалубка. Бетонные работы максимально механизируются. На наших стройках широко применяются бетоносмесители и бетоносмесительные установки различной производительности, мощные автобетоносмесители и автобетоновозы, бетононасосы и пневмонагнетатели, конвейеры и краны для доставки и подачи бетонной смеси, различные типы вибраторов для уплотнения бетонной смеси и другие машины и оборудование.
При производстве бетонных работ необходимы квалифицированные рабочие кадры, способные наиболее полно использовать современные прогрессивные технологии бетона, оснастку, инструменты и механизмы. В новых условиях существенно возросли требования к квалификации и мастерству бетонщика — представителя наиболее массовой строительной профессии (на бетонных работах занято до 20% строительных рабочих).
Список использованной литературы
1. Терентьев О.М. «Технология строительных процессов: Учебник для строительных техникумов.», Москва, 2002 г.
2. «Строительные материалы (Материаловедение. Строительные матриалы)» Под общей редакцией проф. В.Г. Микульского и проф. В.В. Козлова, Москва, 2004 г.
3. А.С. Стаценко «Технология бетонных работ», Минск, 2005 г.
4. С.С. Атаев «Технология индустриального строительства из монолитного бетона» Москва, 1989 г.
5. Журнал «Строительные материалы» №11/2005, №12/2005, №1/2006