Содержание Введение………………………………………………………………………3 1 Общая характеристика и свойства материала или изделия……………..5 1.1 Назначение, свойства и эксплуатационные требования………………5 1.2 Специальные свойства материала или изделия………………………..9 1.3 Контроль качества материала или изделия……………………………14 1.4 Выбор технологической схемы производства, ее описание………….17 2 Сырье (полуфабрикаты) для производства материала или изделия…...21 2.1 Общая характеристика и технические требования к сырью (полуфабрикатам)………………………………………………………………21 2.2 Технологическое оборудование при подготовке сырья (смеси)……..24 2.3 Контроль качества сырья (смеси)……………………………………...28 3 Производство материала или изделия и его формирования…………...29 3.1 Технологическое оборудование которое используется, технологический контроль…………………………………………………….29 3.2 Формирование и закрепление структуры материала или изделия…..33 3.3 Контроль соответствия свойств материала или изделия нормативным требованиям…………………………………………………….35 4 Режим работы предприятия……………………………………………...37 5 Расчет материального баланса…………………………………………...38 6 Назначение материала или изделия……………………….……………..41 Список использованных источников информации……………………….42 | ||||||
КП 6.092.104 2005-009 | Лист | |||||
2 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Введение Стеновые и отделочные материалы - это чаще всего гетерогенные композиции, которые имеют многокомпонентный состав. Их макроструктура определяется назначением материала. Регулирующие соотношения между компонентами материала при решении общего технологического процесса изменяют их свойства [1]. Функциональное назначение стеновых материалов и изделий - обеспечение нужной прочности, жесткости, долговечности сооружений; создание комфортных условий в помещениях и создание комфортного режима в помещении, повышение декоративных свойств интерьера и вида здания в целом за счет использования разнообразной цветной гаммы и фактуры и обеспечение нужного температурно-волажностного режима | ||||||
КП 6.092.104 2005-009 | Лист | |||||
3 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
позволяют применять его не только с целью достижения определенного качественное исполнение поверхности ложковой и тычковой граней, которые могут быть не только гладкими, но и текстурированными. Некоторые виды облицовочного кирпича имеют на лицевых гранях фаски, которые предоставляют возможность выполнения аккуратных швов и препятствуют вылущиванию лицевой поверхности. Кроме кирпича натурального цвета, в очень небольших объемах производится отделочный кирпич с декоративным цветным внешним слоем (ангобом). Применение ангобированного кирпича расширяет палитру декоративных возможностей внешней отделки зданий. Но, как показала практика, в условиях российского климата стойкость ангоба не велика [16]. | ||||||
КП 6.092.104 2005-009 | Лист | |||||
4 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
1 Общая характеристика и свойства керамического кирпича 1.1 Назначение, свойства и эксплуатационные требования Керамические лицевые кирпичи изготовляют из глинистого сырья с добавками или без них способом пластического формования или полусухого прессования с последующей сушкой и обжигом. В зависимости от формы и назначения кирпич и лицевые камни подразделяют на рядовые — для гладких стен, профильные — для карнизов, поясков, клинчатые и т.д. (рис. 1.1.1). В соответствии с ГОСТ 7484—69 максимальные допуски для рядовых изделий составляют: по длине ±4, по ширине и толщине ±3 мм. Изделия должны соответствовать заданному профилю, иметь четкие углы и грани, быть без вмятин и искривлений. У рядовых изделий не менее двух смежных сторон — тычковая и ложковая — должны быть лицевыми, у профильных — лицевыми сторонами являются, кроме профилированной, также прилегающие к ней верхняя и нижняя стороны на 1/3 длины. Рис. 1.1.1 – Профильные кирпичи и камни: а –клинчатый ребровый; б –сухарь; в –платковый; г –ребровый; | ||||||
КП 6.092.104 2005-009 | Лист | |||||
5 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Предел прочности при сжатии должен соответствовать маркам «300», «250», «200», «150», 125», «100» и «75». Предел прочности при изгибе соответственно равен 4; 3,6; 3,4; 2,8; 2,5; 2,2 и 1,8 МПа. По цвету кирпич и лицевые камни должны соответствовать установленному эталону. Водопогло-щение — не менее 6%, для беложгущихся глин — не более 12%, для изделий из остальных глин — не более 14%. Морозостойкость — Мрз 25, Мрз 35 и Мрз 50. Особенности производства лицевых изделий. Кирпич и керамические камни изготовляют по технологии строительного кирпича, только сырье перерабатывается более тщательно. При использовании рыхлых, легко размокающих в воде глин, не имеющих каменистых включений, ограничиваются следующей схемой переработки: ящичный подаватель, дезинтеграторные вальцы, двухвальный смеситель, бегуны мокрого помола или дырчатые вальцы. Если в глинах есть каменистые включения, после бегунов устанавливают 2…3 пары вальцов тонкого помола с доведением ширины щели между валками до 1,0…1,2 мм. При использовании в производстве плотных глин, трудно размокающих в воде, имеющих карбонатные включения, рекомендуется сухая подготовка сырья, а еще лучше шликерная, обеспечивающая удаление вредных включений [2]. Если в сырье есть растворимые соли (Na2SО4, CaSО4 и др.), дающие выцветы на изделиях, принимают меры к их нейтрализации. Наиболее радикальным способом является перевод иона SО3~ в нерастворимое состояние. Для этого его связывают ионом Ва2+, который вводится в массу обычно в виде гидроксида бария (0,5%), карбоната (ВаСО3) или баритовых отходов. Взаимодействие бария с ионом SO3 происходит главным образом в сырой массе. Для этих же целей используется активизированный кремнезем в виде коллоидного высокодисперсного материала. Связывание сульфатов происходит по реакции CaS04 + Si02 = CaSi03 + S03 ; MgS04 + Si02 = MgSi03 + S03. Действие коллоидного кремнезема наиболее эффективно при использовании мергелистых глин с высоким содержанием СаО. | ||||||
КП 6.092.104 2005-009 | Лист | |||||
6 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Вводят его в количестве 10…20%. Эффективной добавкой является (NH4)2 CО3 (до 1%) особенно, если в глинах присутствуют сульфаты. У облицовочного кирпича обязательно качественная наружная поверхность, он выдерживает воздействие воды, мороза и пригоден практически для всех наружных работ. Имеет разнообразную цветовую гамму лицевой поверхности: от почти белого, до темно-коричневого. Лицевой кирпич производят различной формы (прямоугольный, угловой, закругленный и пр.) [16]. Данный кирпич применяется для облицовки фасадов зданий и внутренних помещений. Принципиально технология производства не отличается от производства обычного керамического. Для лицевого кирпича характерно качественное исполнение поверхности ложковой и тычковой граней, которые бывают не только гладкими, но и текстурированными. Некоторые виды облицовочного кирпича имеют на лицевых гранях фаски, которые предоставляют возможность выполнения аккуратных швов и препятствуют выкрашиванию лицевой поверхности. Кроме кирпича натурального цвета, в небольших объемах производится отделочный кирпич с декоративным цветным внешним слоем (ангобом). Применение ангобированного кирпича расширяет палитру возможностей декоративной внешней отделки зданий. Но в определенных климатических условиях стойкость ангоба невелика: через 5…10 лет происходит его отслоение от подложки кирпича, и здание, облицованное таким кирпичом, становится неприглядного вида. С помощью современного технологического процесса достигнута равномерность цвета выпускаемой продукции и уменьшена вероятность появления высолов в процессе эксплуатации. Прочностные свойства лицевого кирпича позволяют применять его и как несущий материал наряду с рядовым кирпичом. | ||||||
КП 6.092.104 2005-009 | Лист | |||||
7 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Рис.1.1.2 – Лицевой ангобированный кирпич Кирпич и камни керамические лицевые характеризуются точностью формы и размеров, а также однородностью цвета и оттенка в данной партии. Эти материалы изготовляют из высококачественных легкоплавких глин по технологии, аналогичной производству обыкновенного кирпича. Подбирая керамические массы и регулируя сроки и температуру обжига, получают кирпич от белого, слегка кремового тона до красноватых и коричневых цветов. На заводах, не располагающих высококачественным сырьем, лицевой кирпич получают торкретированием сухой минеральной крошки или нанесением на его лицевые поверхности ангоба или глазури. Разработана также технология двухслойного кирпича с лицевым слоем из белой глины. Лицевые кирпич и камни укладывают в стену здания вперевязку с обыкновенными, и они несут одинаковую с ними нагрузку. В лицевом кирпиче не допускаются трещины, отколы, известковые включения, пятна, выцветы и другие дефекты. Выбирая лицевой кирпич, надо особенно внимательно следить, чтобы близко к его поверхности или на ней не было известковых включений: при попадании влаги они разбухают разрушают кирпич. В нормах четко прописаны требования к геометрии лицевого кирпича: отклонения от номинальных размеров не должны превышать по длине 4 мм, по ширине 3 мм, по толщине 2 мм, кривизна лицевых поверхностей и ребер - не болем 3 мм по ложку (длинной боковой грани) и 2 мм по тычку (малой боковой грани). | ||||||
КП 6.092 104 2005-009 | Лист | |||||
8 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
1.2 Специальные свойства керамического кирпича Термические свойства. Свойства, которые проявляются в процессе нагрева глины при высоких температурах, называют термическими. Они проявляются в результате сложных физических, химических и физико-химических превращений, протекающих при высокотемпературном обжиге глинистой породы. Важнейшей составляющей многих керамических масс является кристаллический кремнезем. Во многих глинах он присутствует в виде примеси кварцевого песка, а в некоторые керамические массы его вводят в виде добавок песка, кварца и пегматита. При нагревании кремнезем претерпевает модификационные превращения, сопровождающиеся объемными изменениями.[5] При выгорании в керамических массах органических веществ можно различать несколько этапов. При температурах 350….400°С происходит выделение летучих газов и их сгорание. Коксовый остаток выгорает сравнительно медленно при более высоких температурах — 700…800°С. Скорость его выгорания обратно пропорциональна квадрату толщины изделия и в сильной степени зависит от избытка воздуха в печных газах. Выгорание коксового остатка должно быть завершено в период, когда керамический черепок является пористым и газопроницаемым на всю толщину, чтобы газы, образующиеся при выгорании коксового остатка, могли свободно удаляться из толщи керамического изделия. Если же процесс уплотнения периферийной оболочки изделия будет опережать процесс выгорания коксового остатка, то образующиеся газы, создавая повышенное давление внутри керамического черепка, могут вызвать деформацию размягченного изделия, а их прорывы в отдельных местах приводят к образованию трещин. Внутри черепка в этом случае остается черная сердцевина, которая свидетельствует либо о наличии невыгоревшего углерода, либо о восстановлении железистых оксидов до металлического железа. Все эти процессы в значительной мере взаимосвязаны и накладываются друг на друга, что еще больше усложняет картину превращений, происходящих в керамической массе при ее обжиге. | ||||||
КП 6.092 104 2005-009 | Лист | |||||
9 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Если предельно схематизировать последовательность основных изменений и взаимодействий, происходящих при обжиге каолинитовой глинистой породы, то их можно представить так, как они изображены на рисунке.В интервале 450-600°С происходит дегидратация каолинита с образованием безводного метакаолинита, который при 700…800°С разлагается с образованием аморфного кремнезема. Начиная с 900°С глинозем вновь соединяется с кремнеземом, но уже в иных соотношениях, с образованием муллита и дальнейшим обогащением системы аморфным кремнеземом. Аморфный кремнезем, обладая большой реакционной способностью, уже при температуре 750…800°С вступает в соединения с флюсующими примесями (плавнями) глинистой породы, образуя жидкую фазу — силикатные стекловидные расплавы, цементирующие всю систему. Процесс накопления жидкой фазы резко интенсифицируется с возрастанием температуры. Примерно при тех же температурах в восстановительной среде оксид железа переходит в закись, обладающую большой реакционной способностью. Последняя; реагируя с аморфным кремнеземом, образует железистые стекла, способствующие интенсивной цементации системы. Интенсивность этого процесса сильно возрастает при обжиге в восстановительной среде.[7, 8] Остатки аморфного кремнезема, не вошедшие в соединения с другими оксидами, кристаллизуются в кристобалит. Образующаяся жидкая фаза частично оплавляет (разъедает) утлы и грани зерен кристаллического кремнезема, но в основной своей массе он в реакциях образования жидкой фазы не участвует, оставаясь вместе с кристаллическими новообразованиями элементом скелетного каркаса обожженного материала и претерпевая лишь полиморфные превращения. В зависимости от температуры обжига и степени запесоченности глинистой породы основными кристаллическими фазами керамического черепка могут быть муллит, кристобалит и В-кварц, причем в гидрослюдистых глинах преобладают процессы муллитизации, а в монтмориллонитовых - кристобализации.[16] | ||||||
КП 6.092 104 2005-009 | Лист | |||||
10 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Рассмотренные процессы, происходящие при обжиге глинистой породы, обусловливают формирование при этом ряда технологических свойств, именуемых термическими. Важнейшими из них являются огнеупорность, огневая усадка, спекаемость и интервал обжига. Огнеупорностью называют способность керамических материалов противостоять воздействию высоких температур, не расплавляясь при этом. Показателем (количественной мерой) огнеупорности является температура, при которой пироскоп—образец из данного материала, имеющий форму трехгранной усеченной призмы установленных размеров (условно именуемой конусом), деформируется под влиянием собственной тяжести, касаясь при этом своей вершиной керамической подставки. Эту температуру называют условной температурой плавления. Условной ее называют потому, что глинистая порода не представляет собой мономинеральное вещество, а является системой полиминеральной и полидисперсной, не имеющей строго определенной температуры плавления. В этой системе каждое зерно плавится при своей индивидуальной температуре, соответственно своему составу и размерам, а их смесь, т. е. глинистая порода в целом, плавится в некотором интервале температур. Потому-то за температуру плавления глины условно принимают показатель ее огнеупорности. По ГОСТ 9169-75 глины по огнеупорности делят на три класса: огнеупорные, огнеупорностью свыше 1580°С; тугоплавкие - 1350-1580°С; легкоплавкие, огнеупорность которых ниже 1350°С. Огнеупорность глины зависит от ее химического состава. Глинозем повышает огнеупорность, а тонкодисперсный кремнезем в силу своей относительно высокой реакционной способности понижает ее. Огнеупорность глинистых материалов, содержащих в своем составе оксиды железа, зависит еще от химического характера газовой среды при их обжиге: восстановительная среда существенно понижает огнеупорность таких материалов вследствие того, что оксид железа восстанавливается в закись, кремнеземом фаялит 2FeOSiO2 с температурой плавления 1205 °С [4, 16]. | ||||||
КП 6.092 104 2005-009 | Лист | |||||
11 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Спекаемостью глин называют их способность при обжиге уплотняться с образованием твердого камнеподобного черепка. Спекание глин может происходить вследствие стягивания и склеивания твердых частиц жидкой фазой — силикатными расплавами, образующимися при обжиге глины (жидкостное спекание), вследствие рекристаллизации минералов, составляющих керамическую массу, и благодаря реакциям в твердой фазе между отдельными компонентами глины или продуктами их распада (твердо-фазовое спекание). Результатом процесса спекания является уплотнение обжигаемого материала и, как следствие, уменьшение его открытой пористости. Поэтому степень спекания контролируется водопоглощением керамического черепка: спекшимся считается черепок, имеющий водопоглощение не более 5 %. Глины могут спекаться при различных температурах. Поэтому в соответствии с ГОСТ 9169 они разделены на три группы еще и по температуре спекания: низкотемпературного — до 1100°С, среднетемпературного - от 1101 до 1300°С и высокотемпературного - свыше 1300°С. Огневая усадка представляет собой сокращение размеров абсолютно сухого глиняного образца при его обжиге. Сближение глинистых частиц происходит в обжиге под воздействием сил поверхностного натяжения, носителем которых является жидкая фаза, возникающая в материале в виде силикатных расплавов Огневая усадка глин колеблется в пределах 2-8% и достигает в отдельных случаях 14%: С увеличением содержания глинистой фракции она возрастает. Сильно запесоченные глины могут совсем не давать усадки и даже обнаруживать в обжиге «рост» (усадка в этом случае получает отрицательный знак). | ||||||
КП 6.092 104 2005-009 | Лист | |||||
12 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Рис.1.2.1 – Схема действия сил поверхностного натяжения, обусловливающих огневую усадку Монтмориллонитовые глины имеют большую огневую усадку, нежели каолинитовые. Щелочные оксиды увеличивают огневую усадку а железистые оксиды повышают ее лишь при обжиге глины в восстановительной среде. С повышением температуры обжига усадка, как правило, возрастает. По этой причине неравномерно обожженные изделия могут иметь заметный разброс в размерах.[16] Если минимальная морозостойкость лицевых изделий составляет Мрз25, то кирпич и камни из карбонатосодержащих глин с водопоглощением более 14% и из трепелов и диатомитов должны иметь марку по морозостойкости не менее Мрз35.[12,13] | ||||||
КП 6.092 104 2005-009 | Лист | |||||
13 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
1.3 Контроль качества материала или изделия К числу основных технических характеристик кирпича относятся прочность, морозостойкость, водопоглощение. Прочность обычно лежит в диапазоне от М75 до М250. Число обозначает предел прочности на сжатие в кгс/см2. Для строительства малоэтажных зданий обычно используется кирпич невысоких марок (M 100…М 150). Следует отметить, что кирпич М 200 дороже аналогичного М 100 на 20…30%. Одним из важнейших параметров кирпича является морозостойкость — способность выдерживать определенное количество циклов замораживания - оттаивания. Именно этот параметр определяет долговечность сооружения. Как правило, морозостойкость кирпича не менее 25-50, реже - 75 циклов. Для того, чтобы оценить, сколько лет простоит здание, количество циклов следует умножить на поправочный коэффициент, который (в зависимости от климатических условий) равен 2,5 - 3.[9,11] Немаловажное значение имеет также такая характеристика кирпича, как водопоглощение, которое должно быть не ниже 6 % и, как правило, не выше 16 % (12 % — очень неплохой показатель для рядового кирпича). Приобретая партию кирпича необходимо затребовать сертификат, в котором должны указываться все технические характеристики. Хотя наличие сертификата, также как и покупка кирпича известного производителя, еще не является гарантией качества. Это связано с тем, что на многих крупных заводах наряду с технологическими линиями, оснащенными современным дорогостоящим оборудованием, продолжают функционировать устаревшие цеха, выпускающие под этой же торговой маркой кирпич, не отвечающий современным требованиям. Наряду с техническим, кирпич должен иметь и экологический сертификат. По сравнению с другими строительными материалами, и в частности с бетоном, керамический кирпич наиболее экологичен. Кроме глины он содержит минимальное количество добавок, как правило, нехимического происхождения. | ||||||
КП 6.092 104 2005-009 | Лист | |||||
14 | ||||||
Изм. | Лист | № докум. | Подп. | Дата | ||
Таблица 1.3.1 – Технические характеристики кирпича |
Практически единственным контролируемым параметром экологического характера является удельная эффективная активность естественных радионуклидов, которая в соответствии с ГОСТ должна быть более 370 Бк/кг. Величина этого параметра зависит от месторождения глины, которая используется в производстве кирпича. Специалисты рекомендуют проверять приобретаемую партию кирпича с помощью обычного бытового дозиметра.