Прогиб целого стержня (без учета сдвигов)
;Суммарная жесткость средств соединения:
kc = ncTc / dc = 8 ∙ 8.4 / 0.1 =672.0 кН/см;
Деформативность средств соединения (при nc= 8):
;Взаимное смещение элементов (при kc= 0):
;Смещение элементов в составном стержне (при nc= 8):
;Параметр mw1 (для определения kw1):
;Параметр mw2 (для определения kw2):
;Коэффициент влияния податливости:
;Параметр mj (для определения коэффициента kj):
;Коэффициент влияния податливости связей:
;Первое предельное состояние (прочность нормальных сечений):
gn= 0.95 – коэффициент надежности по назначению для II класса надежности [2, прил. 7*];
Первое предельное состояние (прочность средств соединения):
Второе предельное состояние (прогиб продольного ребра панели):
Определение расчетных координат связей сдвига:
, гдек+1 – порядковый номер связи; к = 0…7.
Определение расстояния между связями:
Расстояние от торца составляющих элементов до первого нагельного коннектора (к = 0) принимается равным: S=9d=5.400 м.
Координаты связей сдвига и расстояния между ними показаны в табл. 2 и на рисунке 2, в.
Таблица 2. Координаты связей сдвига и расстояние между ними
Порядковый номер связи, k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Координаты связей сдвига, X | 0.000 | 23.856 | 48.098 | 73.170 | 99.667 | 128.511 | 161.428 | 202.805 | 299.000 |
Расстояние, S | 5.400 | 23.856 | 24.241 | 25.072 | 26.497 | 28.844 | 32.917 | 41.377 | 96.195 |
Определение напряжения в сжатой (верхней) зоне верхнего элемента продольного ребра (h2=12.5 см) от местного изгиба на пролете между нагельными пластинами: S8-9 =96.195 см:
Суммарные напряжения в верхнем поясе:
Прочность и жесткость продольного ребра с принятыми размерами поперечного сечения и общим количеством связей сдвига на полудлине одной плоскости соединения обеспечены.
а) каркас плиты покрытия
б) узел сопряжения продольного и поперечного ребер каркаса
в) продольное ребро каркаса
Рис. 2. Плита покрытия ПП
Согласно заданию – ферма треугольной формы с расчетным пролетом: Lо=16.800 м,
со стрелой подъема: f = 2.950 м.
Рис. 3. Геометрическая схема фермы
Согласно [2], статический расчет стропильной фермы принятой геометрии производится на действие постоянных и снеговой нагрузок (приложенной по всему пролету и на его половине).
Таблица 3. Сбор нагрузок на стропильную ферму
Вид нагрузки | Нагрузка, кН/м2 | Погонная нагрузка, кН/м | ||||
Нормативная | ?f | Расчетная | Нормативная | Расчетная | ||
Покрытие | 0.444 | 0.508 | 2.664 | 3.046 | ||
Собственный вес фермы | 0.094 | 1.1 | 0.104 | 0.566 | 0.622 | |
Итого постоянные: | 0.538 | - | 0.611 | 3.230 | 3.668 | |
Снеговая нагрузка | 1.680 | 2.400 | 10.080 | 14.400 | ||
ИТОГО: | 2.218 | 3.011 | 13.310 | 18.068 |
При определении погонной нагрузки учитывается, что шаг несущих конструкций Lк=6.000 м.
Собственный вес фермы:
kj = 2,5 – коэффициент «собственного веса» фермы, зависящий от типа конструкции.
Коэффициент надежности по нагрузке: γf = 1.6, т.к. g/p = 0.092 / 1.648=0.056 < 0.8 [2, п.5.7]
Рис. 4. Расчетная схема фермы
Таблица 4. Статический расчет стропильной фермы
Стержень | От единичной нагрузки 1 кН/м | Постоянная нагрузка, q=3.368 kН | Снеговая нагрузка, q=14.400 kH | Расчётное усилие | |||||
Слева | Справа | Пролёт | Слева | Справа | Пролёт | ||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Верхний пояс | 1-2 | -13.93 | -6.630 | -20.56 | -75.411 | -200.592 | -95.472 | -296.064 | -371.475 |
2-4 | -13.93 | -6.630 | -20.56 | -75.411 | -200.592 | -95.472 | -296.064 | -371.475 | |
4-6 | -6.63 | -13.930 | -20.56 | -75.411 | -95.472 | -200.592 | -296.064 | -371.475 | |
6-7 | -6.63 | -13.930 | -20.56 | -75.411 | -95.472 | -200.592 | -296.064 | -371.475 | |
Нижний пояс | 1-3 | 12.58 | 6.300 | 18.88 | 69.249 | 181.152 | 90.720 | 271.872 | 341.121 |
3-5 | 6.30 | 6.310 | 12.61 | 46.251 | 90.720 | 90.864 | 181.584 | 227.835 | |
5-7 | 6.30 | 12.580 | 18.88 | 69.249 | 90.720 | 181.152 | 271.872 | 341.121 | |
Раскосы | 2-3 | -4.20 | 0.000 | -4.20 | -15.405 | -60.480 | 0.000 | -60.480 | -75.885 |
5-6 | 0.00 | -4.200 | -4.20 | -15.405 | 0.000 | -60.480 | -60.480 | -75.885 | |
3-4 | 7.55 | -0.010 | 7.54 | 27.655 | 108.720 | -0.144 | 108.576 | 136.231 | |
4-5 | -0.01 | 7.550 | 7.54 | 27.655 | -0.144 | 108.720 | 108.576 | 136.231 |
Рис. 5. Расчетная схема верхнего пояса
Предварительные геометрические размеры поперечного сечения составляющих элементов и сечения в целом:
Механические характеристики древесины: сосна 2-го сорта; Rс = Rи = 1.5 кН/см2;Е=450 кН/см2
Характеристики средств соединения: нагельные пластины Ст9Г6к; d = 6 мм; nн = 9; Тн = 1.4 кН; Тс = Тн d = 1.4 ∙ 9 =12.6 кН; dс = 0.1 см; Dс= 0.2 см.
Продольная сила: N=371.475kН; Максимальный изгибающий момент от поперечной нагрузки:
Для уменьшения величины изгибающего момента используется эксцентричное сопряжение панелей верхнего пояса в узлах фермы через жесткие торцевые диафрагмы. Минимально допустимая высота диафрагмы определяется из расчета опорного торца панели на смятие:
Продольная сила передается торцам нижнего и верхнего составляющих элементов – брусьев – для снижения общего количества связей сдвига вследствие восприятия части сдвигающих усилий по плоскости сплачивания торцевыми диафрагмами. При таком загружении появляется эксцентриситет:
x = 0.6 – коэффициент деформационных приращений изгибающих моментов.
Высота опорной диафрагмы:
По конструктивным требованиям:
Расчетная высота диафрагмы принята: hт = 19.0 см. Геометрический размер диафрагмы 19.5 см, с учетом зазора между брусьями, равный толщине нагельной пластины: tн.п. =0.5 см.
Определение момента, образуемого за счет эксцентричного сжатия панели верхнего пояса:
Суммарная сдвигающая сила на полудлине плоскости соединения панели верхнего пояса как стержня целого сечения: