Смекни!
smekni.com

Проектирование промышленных печей (стр. 2 из 5)

Среди строительных материалов особое место занимает кислотоупорный кирпич. Его применяют для футеровки различных химических аппаратов, а также дымовых труб, через которые удаляются газы, содержащие пары кислот.

2. К огнеупорным материалам предъявляются следующие требования:

- высокая температура начала размягчения и плавления;

- устойчивость против резких изменений температуры;

- максимальная сопротивляемость воздействию шлаков и газов, в том числе насыщенных парами металлов и их оксидов;

- минимальное изменение объема;

- требуемая плотность, низкая общая и открытая пористость;

- невысокая теплопроводность и теплоемкость;

- возможно низкая стоимость огнеупорного материала.

Тип оксида, служащего огнеупорной основой материала, позволяет отнести его к одной из трех категорий: кислый (SiO2), нейтральный (АlО3) или основной (MgO).

3. Действующими нормативами (ОСТ 14-49-79, а с 1992г.–ГОСТ) установлены четыре общих классификационных признака огнеупоров:

- химико-минеральный состав,

- огнеупорность,

- пористость,

- область применения.

По химико-минеральному составу огнеупоры делят на типы:

- кремнеземистые,

- алюмосиликатные,

- глиноземистые,

- глиноземоизвестковые,

- высокомагнезиальные,

- магнезиальноизвестковые,

- известковые,

- магнезиальношпинелидные,

- магнезиальносиликатные,

- хромистые,

- цирконистые,

- оксидные,

- углеродистые,

- карбидкремниевые,

- бескислородные.

Огнеупорные изделия одинакового состава заводы-изготовители классифицируют по применению: мартеновские, доменные, ковшевые для футеровки ковшей, насадочные для кладки насадок регенераторов и др.

4. Огнеупорные материалы должны обладать определенными физическими и рабочими свойствами.

К физическим относят:

- плотность;

- пористость;

- газопроницаемость;

- теплопроводность;

- теплоемкость;

- электропроводность.

Плотность материала оказывает влияние, как на его механические свойства, так и на теплофизические характеристики. Чем выше плотность, тем лучше огнеупорный материал сопротивляется разъедающему действию жидкого металла и шлака, тем ниже его газопроницаемость и тем больше (при прочих равных условиях) механическая прочность. В то же время более плотные материалы обладают повышенной теплопроводностью, т.е. теплоизолирующие свойства их хуже. Для огнеупорных материалов определяют обычно кажущуюся плотность (кг/м3), т.е. отношение массы сухого изделия к его общему объему, включая объем всех пор.

Пористость материала, тесно связанную с кажущейся плотностью, выражают в процентах, как отношение объема пор ко всему объему огнеупорного изделия. Она колеблется от нескольких процентов в литых огнеупорах до 75% и более в теплоизоляционных материалах.

Различают открытую пористость, при которой поры сообщаются с атмосферой, и общую пористость. Первую определяют как отношение объема открытых пор к общему объему изделия, вторую – как отношение объема всех пор (открытых и закрытых) к общему объему изделия.

Газопроницаемость характеризуют коэффициентом газопроницаемости, который выражает объем газа, проходящего через огнеупорное изделие с площадью 1 м2 и толщиной 1 м в единицу времени при разности давлений 9,81 Па.

С повышением температуры газопроницаемость огнеупоров понижается, т.к. вязкость газов с ростом температуры увеличивается.

Теплопроводность огнеупорных материалов оказывает большое влияние на тепловую работу футеровки. Чем она ниже, тем лучше теплоизолирующие свойства кладки.

В большинстве случаев огнеупорная кладка служит изолятором тепла и должна обладать минимальной теплопроводностью (доменная печь, методическая печь, нагревательные колодцы и т.д.). В случаях, когда нагрев происходит через огнеупорную стенку (муфельные печи, тигли), огнеупорный материал служит проводником тепла и, следовательно, должен обладать по возможности большей теплопроводностью.

При повышении температуры теплопроводность большинства огнеупорных материалов возрастает. Увеличение пористости приводит к снижению теплопроводности.

Теплоемкость огнеупорного материала оказывает влияние на тепловую работу футеровки, особенно печей периодического действия. Чем выше удельная теплоемкость огнеупорного материала, тем при прочих равных условиях больше расход тепла на аккумуляцию кладкой печей, изготовленной из этого материала. С ростом температуры теплоемкость всех огнеупорных изделий повышается.

Электропроводность огнеупорных материалов играет важную роль в службе футеровки электрических печей, где огнеупорные изделия часто служат изоляторами. При невысоких температурах большая часть огнеупоров (исключение представляют углеродистые, графитовые и карборундовые изделия) являются электроизоляторами. Однако при увеличении температуры свыше 1000°С изоляционные свойства огнеупоров падают, т.е. их удельное электрическое сопротивление уменьшается. Это явление объясняется образованием жидких фаз, представляющих собой электролит, и возбуждением молекул и атомов.

К рабочим свойствам относят:

- огнеупорность;

- сопротивление деформации под нагрузкой при высоких температурах;

- шлакоустойчивость;

- термостойкость;

- постоянство объема.

Огнеупорность – это свойство материала противостоять длительному воздействию высоких температур, не деформируясь и не расплавляясь.

Огнеупорность, хотя она и является очень важной характеристикой огнеупорного материала, не может быть принята в качестве показателя температурных условий его службы, поскольку в реальных условиях на материал действует не только высокая температура, но и механические нагрузки, что зачастую вызывает его разрушение при температурах более низких, чем температура огнеупорности.

Предельная температура – эта та максимальная температура, при, которой огнеупорный материал может работать в футеровке печи без разрушения. При этом подразумевается воздействие на материал только высокой температуры при нагреве и силы давления вышележащих слоев кладки, без учета других факторов, таких как разъедающее действие расплавов, окалины и т.д.

Сопротивление огнеупоров деформации под нагрузкой при высоких температурах зависит от:

- природы материала (образуется или не образуется связанная кристаллическая решетка);

- плотности огнеупора (чем он плотнее, тем выше сопротивление);

- количества примесей (чем больше плавящихся составляющих, тем ниже сопротивление деформации);

- качества обжига (плохо обожженный материал дает дополнительную усадку).

Шлакоустойчивость характеризует способность огнеупорных материалов противостоять разъедающему действию расплавленных шлаков. Это свойство особенно важно при выборе материала для футеровки плавильных печей. Основными факторами, определяющими шлакоустойчивость, являются состав огнеупоров и контактирующего с ними шлака, а также температура. Поэтому для уменьшения разъедания футеровки печей, где образуются кислые шлаки, ее выполняют из огнеупоров на основе кислых оксидов, а при наличии в печи основных шлаков ее футеруют основными огнеупорами. При этом, чем выше температура жидкого шлака, тем интенсивнее он разъедает тот же самый огнеупорный материал. Уменьшение пористости материала во всех случаях способствует его лучшей шлакоустойчивости.

Термическая стойкость – это способность материала выдерживать резкие колебания температуры, не растрескиваясь и не разрушаясь. Этот показатель характеризуют числом теплосмен, понимая под одной теплосменой цикл нагрева огнеупорного изделия до 1300°С с его последующим резким охлаждением в воде или на воздухе.

Термическая стойкость зависит от теплопроводности и теплоемкости материала, коэффициента объемного расширения и прочности. Многокомпонентные материалы отличаются обычно более высокой термостойкостью, чем те огнеупоры, основой которых служит какой-либо один оксид.

Постоянство объема. Огнеупорные материалы при нагревании до высоких температур испытывают изменение объема двоякого рода: в сторону увеличения (рост) или в сторону уменьшения (усадка). Значительное увеличение или уменьшение размеров кирпичей может вызвать расстройство кладки: образование щелей, трещин, а в некоторых случаях даже разрушение кладки.

5. Глиняный (красный) кирпич изготовляют из смеси неогнеупорных красных глин и песка. Его применяют для строительства фундаментов, боровов, сушил, стволов дымовых труб и для наружной изоляции некоторых печей. Предельная температура применения кирпича 500–650°С. Его средний коэффициент теплопроводности 0,8 Вт/(м∙К), а плотность 1800 кг/м3. Хороший красный кирпич должен иметь правильную форму размерами 250´120´65 мм. Кирпич бывает нескольких марок: 150, 100 и 75 в зависимости от механической прочности на сжатие. Марка означает механическую прочность, например: кирпич марки 100 должен иметь предел прочности на сжатие не менее 100 кг/см2.

Хорошо обожженный кирпич имеет темно-красный цвет и от удара молотком издает чистый звук. При обжиге возможны случаи, когда одни кирпичи пережигаются, а другие получают недостаточный обжиг.

Пережженный кирпич (железняк) – темного цвета, очень плотен, иногда остеклован. Железняк плохо связывается с раствором, поэтому применяется главным образом для кладки фундаментов. Кирпич – недожог имеет светло-красный или сероватый цвет, меньшую прочность, большое водопоглощение, при ударе издает глухой звук. В ответственных частях печей и для кладки дымовых труб кирпич – недожог не применяется.

Силикатный кирпич белого или светло-серого цвета изготовляют из смеси песка с известью. Размеры и марка силикатного кирпича те же, что и красного. Силикатный кирпич разрушается под действием высокой температуры и влажности. Поэтому он не применяется в подземных частях сооружений и в тех местах, где он может подвергнуться действию пара и температуры выше 250°С.