Смекни!
smekni.com

Розрахунок стрижневої системи зі скінченним числом ступенів свободи на вільні та вимушені коливання (стр. 2 из 2)

Відповідно, умова ортогональності І та ІІІ форм:

Умова ортогональності ІІ та ІІІ форм:

Отже, перевірки для всіх форм коливань виконані й умова ортогональності задовільняється.

2. Розрахунок на вимушені коливання

2.1 Розрахункова схема

n=q/ω1=0,82;

2.2 Запис рівняння вимушених коливань при частоті

1). Запишемо диференційне рівняння вимушених коливань. Так як сили опору коливанням не враховуються, то переміщення при вимушених коливаннях будуть залежати від сил інерції і збурюючої сили:

Рішення системи шукаємо для випадку стаціонарних коливань. Вважаємо, що всі маси коливаються за законом збурюючої сили:

уі=cіsinθt;

= -cіθ2sinθt,

сі - амплітуда переміщень в і-му напрямку.

В цьому разі:

2). Обчислимо вільні члени шляхом побудови епюри згинальних моментів від амплітудного значення збурюючої сили:

Визначимо одиничні переміщення мас під дією зовнішнього навантаження:

;

;

.

Для перевірки правильності обчислення вільних членів, знайдемо добуток сумарної епюри від одиничного навантаження та епюри моментів від амплітудного значення збурюючої сили:

Оскільки

=
, то вільні члени визначено вірно.

2.3 Вихідні дані для розрахунку вимушених коливань на ЕОМ

Співвідношення частот вимушених і вільних коливань:

q/ω1=0,82; Вектор вільних членів:

.

2.4 Обчислення амплітуд сил інерції та амплітуди коливань

Розв’язавши систему рівнянь за допомогою програми Dinamo16, одержимо: амплітуди сил інерції: Z1 = 2,606116 [кН], Z2 = 3.135882 [кН], Z3 = 25.298055 [кН]. Амплітуди коливань: С1 = 123.137351/ЕІ [м], С2 = 197.557959/ЕІ [м], С3 = 683.038443/ЕІ [м].

2.5 Побудова епюри згинальних моментів від дії динамічних навантажень та її кінематична перевірка

.

Виконаємо кінематичну перевірку даної епюри. Для цього знайдемо суму амплітуд коливань :

.

Також знайдемо добуток епюр

та сумарної епюри від одиничного навантаження:

Оскільки

=
, то епюру моментів від динамічних навантажень побудовано вірно. Відносна похибка обчислень:

.

2.6 Динамічні коефіцієнти по зусиллях і по переміщеннях для характерних перерізів системи

Динамічний коефіцієнт по зусиллях визначається для характерних перерізів за формулою:

:

;

;

;

.

Динамічні коефіцієнти по переміщенням обчислюються за формулою:

:

;

;

.

2.7 Деформована схема рами при вимушених коливаннях

Література

1. Смирнов А.Ф., Александров А.В., Лащеников Б.Я., Шапошников Н.Н. Строительная механика стержневых систем. - М.: Стройиздат, 1981.

2. Дарков А.В., Шапошников Н.Н. Строительная механика. - 8-е изд., перераб. и доп. - М.: Высшая школа, 1986.

3. Киселев В.А. Строительная механика, общий курс - 4-е изд., исправленное и доп. - М.: Стройиздат, 1986.

4. Бутенко Ю.И., Канн С.Н., Пустовойтов В.П. и др. Строительная механика стержневых систем и оболочек. - К.: Вища школа, 1980.

5. Строительная механика. Руководство к практическим занятиям / Под ред. Ю.И. Бутенко. - К.: Вища школа, 1989.

6. Руководство к практическим занятиям по курсу строительной механики (статически определимые и неопределимые системы) / Под ред. Г.К. Клейна. - 3-е изд., перераб. и доп. - М.: Высшая школа, 1973.

7. Методичні вказівки та контрольні завдання з дисципліни „Будівельна механіка (спецкурс)” для студентів денної форми навчання. Частина 3 (стійкість і динаміка будівель і споруд) / Полтава: ПНТУ, 2003. Укладачі: О.А. Шкурупій, Б.П. Митрофанов, А.М. Пащенко.