Смекни!
smekni.com

Расчет и проектирование оснований и фундаментов промышленных зданий (стр. 5 из 7)

=1,2(0,8372·24·106·0,675·10-3·4·10-3·А3–0,837 ·24·106·0,675·10-3·2·10-3·В3+16,38·D3/0,837) =

= 54,5А3 – 32,5В3 + 23,5D3

Результаты дальнейших вычислений, имеющих целью определение Мzmax, сводим в табл.10, причем при назначении Z используем соотношение

= Z×ae, в котором значения Z принимаем по табл.4. прил.1 к СНиП 2.02.03-85.

Результаты вычислений изгибающих моментов

Таблица 10

/Zi
A3 В3 D3 Мz
0,48 0,4 -0,011 -0,002 0,400 8,7
0,96 0,8 -0,085 -0,034 0,799 15,25
1,43 1,2 -0,287 -0,173 1,183 17,78
1,91 1,6 0,673 -0,543 1,507 16,40
2,39 2,0 -1,295 -1,314 1,646 15,80

Как видно из таблицы, МzmaxI= 17,78 кНм действует на глубине z =1,43 м. Эпюра моментов показана на рис.12.

Эксцентриситеты продольной силы для наиболее и наименее нагруженных свай составляют соответственно:

Определим значения случайных эксцентриситетов по п.1.21. СНиП 2.03-01-84 для расчетной длины

м и поперечного размера сваи dсв = 30 см:

Так как полученные значения эксцентриситетов е 01 и е 02 больше еai, оставляем эти значения для дальнейшего расчета свай по п.3.20 СНиП 2.03.01-84.

Находим расстояния от точек приложения продольных сил NmaxI и NminI до равнодействующей усилий в арматуре S:

Определим высоту сжатой зоны бетона по формуле (37) СНиП 2.03.01-84:

Граничное значение относительной высоты сжатой зоны по табл.2.2 п.2.3.12, учебного пособия, составляет для стали А-Ш и бетона В20 xR = 0,591

При

, следовательно принимаем значение

x1 = 15,5 см для дальнейшего расчета.

Проверяем прочность сечения сваи по формуле (36) СНиП 2.03.01-84:

кН <

802 кН

кН <

=315 кН

Несущая способность свай по прочности материала в наиболее нагруженных сечениях обеспечена.

6.14 Расчет осадки основания свайного фундамента

Определяем размеры и вес условного фундамента (по указаниям п.7.1. СНиП 2.02.03-85). Расчетная схема показана на рис.11.

°

Размеры свайного поля по наружному обводу:

м;
м

Размеры площади подошвы условного массива:

м

м

Площадь подошвы условного массива Аусл =

3,6 · 2,4 = 8,64 м2

Объём условного массива Vусл = Aусл ×hусл – Vr = 8,64 × 8,45 – 6,37 =66,6 м3

Вычислим средневзвешенное значение удельного веса грунта выше подошвы условного фундамента:

9,37 кН/м3

Вес грунта в объёме условного фундамента: Ggr = Vусл ×gIImt = 66,6·9,37 = 622 кН

Вес ростверка GrII = Vr×gb×gf = 6,37 × 24×1 = 153 кН

Вес свай Gсв II = 1,6 × 9,81×5×1 =78 кН

Расчетная нагрузка по подошве условного фундамента от веса грунта, ростверка и свай:

GII = 622 + 153 + 78 = 853 кН

Проверяем напряжения в плоскости подошвы условного фундамента.

Ntot II = Ncol II + GII = 1310,19 +853 = 2163 кН

Mtot II = Mcol II + Qcol II × Hr = 826,87 + 81,91×1,5 = 950 кНм

Расчетное сопротивление грунта основания условного фундамента в уровне его подошвы определим по формуле (7) СНиП 2.02.01-83:

Принимаем: gc1 = 1,2 gc2 = 1; k = 1; jII 4 = 18°; cII 4 = 44 кПа

Mg = 0,43; Mq = 2,73; Mc = 5,31; gIImt = 9,25 кН/м3

= 551 кПа

Среднее давление PIImt по подошве условного фундамента:

< R = 551 кПа

Максимальное краевое давление PIImax:

433 < R = 551 кПа

Для расчета осадки методом послойного суммирования вычислим напряжение от собственного веса грунта на уровне подошвы условного фундамента:

szg,0 = 17,05·0,8+8,21·3,35+8,51·1,7+8,95·1,9 = 72,6 кПа

Дополнительное вертикальное давление на основание от внешней нагрузки на уровне подошвы условного фундамента:

szp 0 = P0 = PII mt - szg,0 = 250 – 72,6 = 177,4 кПа

Соотношение сторон подошвы фундамента:

Значения коэффициента a устанавливаем по табл.1 прил.2 СНиП 2.02.01-83.

Для удобства пользования указанной таблицей из условия:

принимаем толщину элемента слоя грунта hi = 0,2 × b = 0,2 × 2,4 = 0,480 м

Дальнейшие вычисления сводим в таблицу 11.

Определение осадки

Таблица 11

zi, м ξ=2zi/b zi + d, м a szp = a×P0,кПа szg = szg,0 ++ gsb, i × zi,кПа 0,2×szg,кПа Е,кПа
0 0 7,00 1,000 177,40 72,6 14,52 16000
0,480 0,4 7,480 0,973 172,60 76,90 15,38 16000
0,960 0,8 7,960 0,852 151,14 81, 19 16,24 16000
1,440 1,2 8,440 0,690 122,40 85,49 17,10 16000
1,920 1,6 8,920 0,544 96,50 89,78 17,96 16000
2,400 2,0 9,400 0,426 75,60 94,08 18,81 16000
2,880 2,4 9,880 0,337 60,00 98,37 19,67 16000
3,360 2,8 10,360 0,271 48,08 102,67 20,53 16000
3,840 3,2 10,840 0,220 39,02 106,97 21,39 16000
4,320 3,6 11,320 0,182 32,28 111,26 22,25 16000
4,800 4,0 11,800 0,152 26,96 115,56 23,11 16000
5,280 4,4 12,280 0,129 22,88 119,86 23,97 16000
5,760 4,8 12,760 0,111 19,69 124,15 24,83 16000
6,240 5,2 13,240 0,096 17,03 128,45 25,69 16000

На глубине Hc = 5,280м от подошвы условного фундамента выполняется условие СНиП 2.02.01-83 (прил.2, п.6) ограничения глубины сжимаемой толщи основания (ГСТ): szp= 22,88 кПа » 0,2×szg = 23,97 кПа,

поэтому послойное суммирование деформаций основания производим в пределах от подош вы фундамента до ГСТ

Осадку основания определяем по формуле:

= 0,022 м = 2,2 см

Условие S = 2,2 см < Su = 12,0 см выполняется (значение Su = 12,0 см принято по таблице прил.4 СНиП 2.02.01-83).

7. Определение степени агрессивного воздействия подземных вод и разработка рекомендаций по антикоррозионной защите подземных конструкций

Для железобетонных фундаментов на естественном основании серии 1.412-2/77, принятых на основе технико-экономического сравнения вариантов, и технологического приямка установим наличие и степень агрессивного воздействия подземных вод по данным химического анализа, для соответственных грунтовых условий.

Для фундаментов и приямка предусматриваем бетон с маркой по водопроницаемости W4 на портландцементе по ГОСТ 10178-76, арматуру классов А-IIи А-III. Фундаменты каркаса и приямок расположены ниже УПВ лишь частично, однако за счет возможных изменений УПВ и капиллярного подъема до 1,2 м над УПВ все поверхности фундамента и технологического приямка могут эксплуатироваться под водой, либо в зоне периодического смачивания. Степень агрессивного воздействия вода на подземные конструкции оцениваем в соответствии с табл.5, 6, 7 СНиП 2.03.11-85.

Коэффициент фильтрации глины, в котором расположены подземные конструкции, равен: Kf = 2,5 ×10-8 см/с × 86,4×103 с/сут = 0,216×10–2 см/сут = 2,16 × 10–2 м / сут < 0,1 м / сут, поэтому к показателям агрессивности, приведенным в табл.5, 6, 7 СНиП 2.02.11-85, необходимо вводить поправки в соответствии с примечаниями к указанным таблицам.

Определяем суммарное содержание хлоридов в пересчете на ионы Cl –, мг/л, в соответствии с прим.2 к табл.7 СНиП 2.03.11-85:

990 + 190×0,25 = 1038 мг/л

Дальнейшую оценку ведем в табличной форме (табл.12).

Анализ агрессивности воды для бетона на портландцементе