Смекни!
smekni.com

Строительная механика (стр. 7 из 7)

Рисунок 8.2 - График колебаний

За время одного цикла колебаний

происходит приращение амплитуд колебаний на величину:

,(8.12)

Аналогично изложенному можно решить уравнение колебаний галопирования (8.2) и найти параметры колебаний:

(8.13)

Выводы:

1. Колебания динамической системы без сил трения опасны тем, что в резонансном и околорезонансном режимах происходят значительные нарастания амплитуд колебаний. Возникает обезгрузка колесных пар и потеря их устойчивости против вкатывания на головку рельса. Возможны саморасцепы вагонов.

2. Уровень колебаний определяется величиной возмущающих нагрузок

, а последние соотношениями:

· длины базы вагона и неровности пути;

· частот вынужденных

и свободных колебаний (
).

3. Для снижения колебаний необходимо ввести в рессорное подвешивание диссипативные силы: вязкого или сухого трения.

8.2 Определение параметров гасителей колебаний

Параметры гасителей сухого трения

Необходимые значения сил трения гасителей в первом приближении определим из условия энергетического принципа.

Работа сил трения гасителей за один период колебаний должна равняться приращению потенциальной энергии рессорного подвешивания вагона за тот же период:

(8.14)

где

– число гасителей и рессор в вагоне.

– работа сил трения и приращение потенциальной энергии в рессорном комплекте при колебании по оси
.

Работу сил сухого трения фрикционного гасителя найдем по площади гистерезисной петли силовой характеристики гасителя (рис.8.3, а):

,(8.15)

а приращение потенциальной энергии – по работе сил упругости (рис. 8.3,б):

,(8.16)

где

– силы трения при сжатии и растяжении гасителя в среднем положении;

– амплитуда деформаций рессор и гасителя;

– приращение деформаций рессор за период колебаний;

– силы упругости в начале и в конце периода колебания рессорного комплекта:

,(8.17)

– вертикальная жесткость рессорного комплекта.

Рисунок 8.3–Работа сил трения

Для вагона условие энергетического баланса имеем равное:


(8.18)

Откуда требуемые значения сил трения, при допущении

в виду малости, получаем равным:

(8.19)

Приращение вертикальных деформаций рессор находим по приращению амплитуд колебаний подпрыгивания и галопирования:

(8.20)

где

- полубаза вагона.

Принято силы трения оценивать через удельные характеристики – коэффициенты относительной сил трения при сжатии

и растяжении
.

(8.21)

где

– сила упругости в рессорном подвешивании от статических нагрузок.

(8.22)

и тогда выражение (8.19) представим как

(8.23)

Или

(8.24)

где

- средняя требуемая величина коэффициента относительного трения гасителя колебаний.

Таким же образом можно получить параметр

. По колебаниям подпрыгивания и галопирования выбирают наибольшее. Значение принятого коэффициента относительного трения для расчета гасителей колебаний является приближенным и в последующих исследованиях уточняется в динамических системах с сухим трением в рессорном подвешивании.

На основании энергетического способа могут быть определены параметры гасителей вязкого трения.

Работа сил трения гидравлического гасителя колебаний равна:

(8.25)

Откуда на основании энергетического принципа:

(8.26)


Литература

1. Вершинский, С.В., Данилов, В.Н., Хусидов, В.Д. Динамика вагона: Учебник для вузов ж.-д. трансп./Под ред. С.В. Вершинского. – М.: Транспорт, 1991. – 360 с.

2. Сенаторов, С.А. Прогнозирование нагруженности, износа и динамики подвижного состава: Ч.1. Динамические системы подвижного состава и методы их исследования. Уч. пособ. – Екатеринбург: Изд. УЭМИИТ, 1996 - 104 с.

3. Сенаторов, С.А. Прогнозирование нагруженности, износа и динамики подвижного состава: Ч.2. Инерционные модели динамических систем подвижного состава. Уч.пособ. – Екатеринбург: Изд. УЭМИИТ, 1996. – 71 с.