Министерство транспорта Российской Федерации
Федеральное агентство железнодорожного транспорта
САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ
Кафедра "Строительные конструкции и материалы"
Курсовой проект по дисциплине
"ОСНОВАНИЯ И ФУНДАМЕНТЫ"
на тему: "Проектирование фундаментов мелкого и глубокого заложения под промежуточные опоры мостов"
Выполнила: студентка гр.264
Хайбрахманова Я.Р.
Принял: Травин А.В.
Самара 2009
Содержание
Введение
1. Исходные данные
2. Проектирование фундамента мелкого заложения
2.1 Определение минимально возможной глубины заложения фундамента и его высоты
2.1.1 Определение глубины заложения фундамента, возводимого на водотоке
2.1.2 Определение высоты фундамента
2.2. Расчёт основания и фундамента по первой группе предельных состояний
2.2.1 Расчёт по несущей способности основания
2.2.1.1 Определение размеров подошвы фундамента hf, b и l
2.2.1.2 Определение расчётного сопротивления грунта основания осевому сжатию
2.2.1.3 Определение расчётных нагрузок на фундамент
2.2.2 Расчёт фундамента на устойчивость против опрокидывания
2.3 Расчёт основания и фундамента по второй группе предельных состояний
2.3.1 Определение осадки основания фундамента
2.3.2 Определение крена фундамента
3. Проектирование фундамента глубокого заложения
3.1 Определение глубины заложения ростверка и его размеров
3.2 Выбор длины и размеров поперечного сечения свай
3.3 Определение несущей способности сваи
3.4 Размещение свай под подошвой ростверка
3.5 Определение расчётной нагрузки на сваю
4. Технико-экономическое сравнение вариантов фундамента
Библиографический список
Введение
Целью данного курсового проекта является проектирование фундаментов мелкого и глубокого (свайного) заложения под промежуточные опоры мостов.
Рис. 1.1. Конструктивная схема моста с жёстким фундаментом мелкого заложения под промежуточную опору: УМВ – уровень меженных вод; NL – отметка поверхности природного рельефа; FL – отметка подошвы фундамента; WL – отметка уровня подземных вод; l – расчётный пролёт
Рис. 1.2. Конструктивная схема моста с фундаментом глубокого заложения (свайным) с низким жёстким ростверком под промежуточную опору. УМВ – уровень меженных вод; l – расчётный пролёт
1. Исходные данные
Исходными данными для выполнения курсовой работы являются:
- инженерно-геологические условия района строительства , которые принимаются по результатам ранее выполненной курсовой работой по механике грунтов;
- физико-механические характеристики грунтов основания , численные значения которых принимаются по результатам ранее выполненной курсовой работы по механике грунтов;
- конструкция промежуточной опоры и фундамента под неё принимаются по рисункам 2.1 и 2.2;
- схема приложения нагрузок на промежуточную опору и фундамент принимается по рисунку 2.3;
- нормативные нагрузки на промежуточную опору и фундамент принимаются по таблице 2.1;
- расчётный пролёт (l), высота опоры (hоп), коэффициент для определения и глубина размыва грунта (hр) принимаются по таблице 1.
2. Проектирование фундамента мелкого заложения
Конструкция фундамента мелкого заложения и основные параметры, её определяющие, приведены на рис.2.1 . Такие фундаменты проектируются монолитными из бетона класса не ниже В15.
2.1 Определение минимально возможной глубины заложения фундамента и его высоты
Глубина заложения фундаментов определяется:
- инженерно-геологическими условиями площадки строительства;
- возможным размывом грунта у фундамента при возведении его в русле реки (на водотоке.);
- глубиной сезонного промерзания грунтов;
- нагрузками, передаваемыми фундаментом на грунты основания.
Вместе с тем, глубина заложения фундамента должна быть такой, чтобы надёжная и безопасная эксплуатация сооружения обеспечивалась при минимальных затратах на возведение фундаментов.
Таблица 1 Исходные данные
Наименование параметра | Номер варианта 0 |
Нормативная нагрузка от собственного веса конструкций пролётных строений G nпр.с., кН | 2950 |
Нормативная нагрузка от подвижного состава P n, кН | 6860 |
Нормативная горизонтальная продольная нагрузка от торможения или силы тяги Т n, кН | 686 |
Номер варианта 2 | |
Расчётный пролёт l, м | 41 |
Высота опоры hоп., м | 6.4 |
Глубина размыва грунта hр, м | 0.5 |
Коэффициент Мt | 19 |
Выполнение этого условия, при заданной конструкции фундамента, достигается за счёт рационального выбора наименьшей (из возможных) глубины его заложения. При этом следует учитывать, cуглинок с показателем текучести IL =0.96 нельзя брать в качестве несущего слоя. Такой грунт должн прорезаться фундаментом до слоя надёжного грунта-песка, который и принимается за несущий. В выбранный несущий слой грунта фундамент должен быть заглублен не менее чем на 0,5 м.
2.1.1 Определение глубины заложения фундамента, возводимого на водотоке
По инженерно-геологическим условиям площадки строительства
Исходя из инженерно-геологических условий минимальная глубина заложения фундамента d (рис.1.1а) будет:
d = hнес. сл. + 0,5 (2.1)
где hнес. сл. – глубина подошвы слоя, предшествующего несущему, м.
При возможности размыва грунта фундамент мостовой опоры должен быть заглублен не менее чем 2,5 м от дна водотока после его размыва расчётным паводком.
Исходя из возможности размыва грунта, глубина заложения фундамента d (рис.1.1а) будет:
d = hw + hp + 2,5 , (2.2)
где hw - глубина водотока (рис.1.1а), м;
hp - глубина размыва грунта, принимаемая по табл.1, м.
d=1,6+0,5+2,5=4.6 м
2.1.2 Определение высоты фундамента
Высота фундамента hf определяется как разность отметок его подошвы и обреза и находится из выражения:
hf = d – dобр. , (2.4)
где d – глубина заложения фундамента, м; dобр. – расстояние от условной нулевой отметки до обреза фундамента, принимаемое равным: hf =4,6-0,5=4,1 для фундаментов, возводимых на водотоке dобр = 0,5 м;
2.2 Расчёт основания и фундамента по первой группе предельных состояний
В соответствии с п.7.5[2], расчёт основания и фундамента по первой группе предельных состояний – это расчёты по несущей способности основания и устойчивости фундамента против опрокидывания. Прочность и устойчивость конструкций жёстких фундаментов мелкого заложения по материалу обеспечивается, как правило, выполнением конструктивных требований при назначении их размеров.
2.2.1 Расчёт по несущей способности основания
2.2.1.1 Определение размеров подошвы фундамента hf, b и l
Размеры подошвы фундамента связаны с его высотой hf, исходя из геометрических соображений и Рис.2.1, следующими простыми соотношениями:
b = bo + 2hf tga; (2.5)
l = lo + 2hf tga ,
где bo и lo – ширина и длина фундамента в уровне обреза, принимаемые по рис.2.1, м.
Из соотношений (2.5) следует, что при заданной высоте фундамента размеры подошвы могут быть минимальными при a = 0 и максимальными при a = 30о. В первом случае размеры подошвы будут совпадать с размерами фундамента по обрезу, а боковые грани будут без уступов.
Однако основное исходное условие для выбора размеров подошвы фундамента – обеспечение надёжной и безопасной работы сооружения (в данном случае моста). Для этого необходимо, чтобы при соблюдении соотношений (2.5) среднее давление р под подошвой фундамента от внешних нагрузок не превышало бы расчётного сопротивления грунта основания R, при этом максимальное давление pmax не должно превышать 1,2R, а минимальное pmin не должно быть растягивающим, чтобы не было отрыва подошвы от основания.
Исходя из приведенных выше соображений и в соответствии с требованиями п.п. 7.7, 7.8 [2] будем иметь:
p £ R / gn;
pmax £ 1,2R / gn; (2.6)
pmin ³ 0 ,
где p, pmax, pmin – среднее, максимальное и минимальное давление под подошвой фундамента (рис.2.3), определяемые по формулам, кПа:
p = N / A = N / (b*l); (2.7)
pmax = N / A + M / W = N / (b*l) + T(hоп.+ hf) / (l*b2 / 6); (2.8)
pmin = N / A - M / W = N / (b*l) + T(hоп.+ hf) / (l*b2 / 6); (2.9)
R – расчётное сопротивление грунта основания осевому сжатию, определяемое по формуле (2.10), кПа;
gn – коэффициент надёжности по назначению сооружения, принимаемый равным1,4;
N - суммарная вертикальная расчётная нагрузка на фундамент в уровне его подошвы, определяемая по формуле(2.18), кН;
Т - расчётная горизонтальная продольная нагрузка от торможения или силы тяги, определяемая по формуле (2.13), кН;
W – момент сопротивления площади подошвы фундамента относительно оси, проходящей через её центр тяжести и параллельной длинной стороне фундамента;
b, l – размеры подошвы фундамента, м;
hоп., hf – высота опоры и фундамента, м.
Таким образом, в общем случае для определения размеров подошвы фундамента требуется совместное решение уравнений (2.5) – (2.9). Реализация такого подхода весьма трудоёмка, поскольку приводит к необходимости решения громоздких уравнений третьей степени. В связи с этим в практике проектирования задача определения размеров подошвы фундаментов решается более простым способом – методом последовательных приближений.