Смекни!
smekni.com

Эксплуатация и наладка систем теплогазоснабжения и вентиляции (стр. 24 из 33)

Рис. 3.1. Пылеосадительная камера: 1 – корпус; 2 – пылеотводящие бункера

3.2.2.4 ИНЕРЦИОННЫЕ ПЫЛЕУЛОВИТЕЛИ. При резком изменении направления движения газового потока частицы пыли под действием инерционной силы будут стремиться двигаться в прежнем направлении и в дальнейшем могут быть выделены из этого потока. На этом принципе работает целый ряд пылеуловителей.

Камера с перегородкой по эффективности не на много отличается от обычной осадительной горизонтальной камеры, но имеет более высокое гидравлическое сопротивление. Плавный поворот в камере позволяет снизить гидравлическое сопротивление.

В осадителе запыленный газовый поток направляется сначала вниз по расширяющемуся конусу, а затем поворачивает на 180о и выводится сверху. В результате этого частицы пыли подвергаются дополнительному усилию, направляющему их в сторону бункера камеры. Это усилие обеспечивает дополнительное ускорение порядка g/3. Расширяющийся конус позволяет постепенно снизить скорость газового потока и препятствует вторичному уносу частиц.

В подобных пылеуловителях, устанавливаемых непосредственно за доменными печами, скорость газов в свободном сечении кмеры составляет примерно 1,0 м/с, а во входной цилиндрической трубе – около 10 м/с. При этом частицы пыли крупнее 25-30 мкм улавливаются на 65-85%. Гидравлическое сопротивление подобного пылеуловителя с диаметром камеры 10 м и приблизительно такой же высотой цилиндрической части составляет от 150 до 390 Па.

Эффективность пылеуловителя с заглубленным бункером, в зависимости от скорости газов на входе, приведена ниже:

Ïûëü Ñêîðîñòü ãàçîâ íà âõîäå, ì/ñ Êîíöåíòðàöèÿ ïûëè, ã/ì3 Ýôôåêòèâíîñòü, %
Ðàñïûëèâàåìûé óãîëü (ñîäåðæàíèå ÷àñòèö ðàçìåðîì ìåíåå 60 ìêì – 75,4%) 7,3 9,9 12,2 34,9 91,0 23,4 74,3 63,0 47,0
Çîëà (ñîäåðæàíèå ÷àñòèö ðàçìåðîì ìåíåå 60 – 60,6%) 5,3 8,6 13,5 19,8 21,1 10,3 79,7 70,5 55,5

Решающее влияние на вторичный унос частиц пыли из подобного пылеуловителя оказывает глубина цилиндрической части камеры, где гасится турбулентный поток газа. Наличие же вторичного уноса подтверждается снижением эффективности с ростом скорости газов.

3.2.2.5 ЦИКЛОНЫ. Циклонные аппараты благодаря дешевизне и простоте устройства и обслуживания, сравнительно небольшому сопротивлению и высокой производительности являются наиболее распространенным типом сухого механического пылеуловителя.

Циклонные аппараты имеют следующие преимущества:

1) отсутствие движущихся частей в аппарате;

2) надежное функционирование при температурах газов вплоть до 500 оС без каких-либо конструктивных изменений (если предусматривается применение более высоких температур, то аппараты можно изготовлять из специальных материалов);

3) возможность улавливания абразивных материалов при защите внутренних поверхностей циклонов специальными покрытиями;

4) пыль улавливается в сухом виде;

5) гидравлическое сопротивление аппаратов почти постоянно;

6) аппараты успешно работают при высоких давлениях газов;

7) пылеуловители весьма просты в изготовлении;

8) рост запыленности газов не приводит к снижению фракционной эффективности очистки.

Правильно спроектированные циклоны могут эксплуатироваться надежно в течение многих лет.

Вместе с тем необходимо иметь в виду, что гидравлическое сопротивление высокоэффективных циклонов достигает 1250 – 1500 Па, и частицы размером меньше 5 мкм улавливаются циклонами плохо.

Рис. 3.2. Основные виды конструкций циклонов (по подводу газов): а – спиральный; б – тангенциальный; в – винтообразный; г – розеточный (циклон с возвратом газов); д – розеточный (прямоточный циклон)

На рис. 3.2 схематично представлены основные виды конструкций циклонных пылеуловителей. Циклоны различаются по способу подвода газа в аппарат, который может быть спиральным (рис. 3.2, а), тангенциальным, обычным (рис.3.2, б) и винтообразным (рис. 3.2, в), а также осевым (рис.3.2, г, д). Циклоны с осевым (розеточным) подводом газов работают как с возвратом газов в верхнюю часть аппарата, та и без него (рис. 3.2, д). Последний тип аппаратов («прямоточные циклоны») отличается низким гидравлическим сопротивлением и меньшей по сравнению с циклонами других типов эффективностью пылеулавливания. Недостатком прямоточных циклонов является необходимость отсоса части газов через бункер для отвода пыли, что способствует их абразивному износу.

Удаление пыли из газов в циклоне протекает в две стадии. На первой стадии частицы переносятся в зону осаждения. Этот процесс осуществляется за счет центробежной силы. Вторая стадия – отделение частиц – начинается, когда концентрация частиц в газовом потоке превышает предельную нагрузку, т.е. то количество пыли, которое в состоянии переносить газовый поток в данных условиях с учетом пристенногоэффекта.

Принципиально циклон работает последующей схеме (рис. 3.3). Газы, направляющиеся в аппарат, поступают в цилиндрическую часть циклона и совершают движение по спирали с возрастающей скоростью от периферии к центру, спускаются по наружной спирали, затем поднимаются по внутренней спирали и выходят через выхлопную трубу. Обычно в циклонах центробежное ускорение в несколько сот, а то и тысячу раз больше ускорения силы тяжести. Поэтому, даже весьма маленькие частицы пыли не в состоянии следовать за линиями тока газов и под влиянием центробежной силы выносятся из кривой движения газов по направлению к стенке.

В цилиндрической камере циклона статическое давление, как и в каждом искривленном течении, сильно падает в направлении от периферии к центру. В основном потоке направленные во внутреннюю сторону сжимающие усилия приходят в равновесное состояние с центробежными силами газов. Более медленно текущий у стенки циклона пограничный слой соответственно испытывает меньшие центробежные силы.

Однако у конической стенки циклона и у его крышки начинает уже сказываться перепад давления, сжимающее поток усилие становится значительно больше центробежной силы, и поток в виде сильного вторичного вихря направляется внутрь, захватывая с собой много частиц пыли. Но так как затем поток еще несколько раз по пути вниз обернется вокруг выхлопной трубы, частицы могут быть вновь отброшены к стенке аппарата.

Вторичный поток, искривленный вдоль конической стенки, захватывает отброшенную к стенке пыль и направляет ее вниз к пылеосадительной камере (бункеру). Без этого потока отдельные частицы, находящиеся у стенки, не смогли бы попасть вниз, поскольку направленная вверх составляющая центробежной силы является большей по сравнению с силой тяжести.

Рис. 3.3. Схема работы циклона: 1 – входной патрубок; 2 – выхлопная труба; 3 – цилиндрическая камера; 5 – пылеосадительная камера

О большом влиянии вторичного потока свидетельствует тот факт, что пыль выносится из лежащих и даже из перевернутых циклонов.

В пылеосадительной камере вследствие сужения в месте соединения газовый поток циркулирует слабее, чем в цилиндрической камере. Однако и в этом случае на оси вихрь имеет пониженное давление. Часть вторичного потока цилиндрической камеры в пылеосадительной камере перемещается вниз и вновь возвращается в ядро вихря. Благодаря этому же отсепарированная пыль может быть вновь захвачена и вынесена в район оси вихря.

3.2.2.6 ВИХРЕВЫЕ ПЫЛЕУЛОВИТЕЛИ. Основным отличием вихревых пылеуловителей от циклонов является наличие вспомогательного закручивающего газового потока.

На рис. 3.4 показаны две основные разновидности вихревых пылеуловителей. В вихревом аппарате соплового типа (рис. 3.4, а) запыленный газовый поток закручивается лопаточным завихрителем и двигается вверх, подвергаясь при этом воздействию вытекающих из тангенциально расположенных сопел 3 струй вторичного газа (воздуха). Под действием центробежных сил взвешенные в потоке частицы отбрасываются к периферии, а оттуда – в возбуждаемый струями спиральный поток вторичного газа, направляющий их вниз в кольцевое межтрубное пространство. Вторичный газ в ходе спирального обтекания потока очищаемого газа постепенно полностью проникает в него. Кольцевое пространство вокруг входного патрубка оснащено подпорной шайбой 6, обеспечивающей безвозвратный спуск пыли в бункер 7.