В каких расчётах участвуют расчётные значения нагрузок, а в каких нормативные
В расчётах, характеризующихся высоким уровнем ответственности (например, расчёты на прочность и устойчивость) участвуют расчётные нагрузки. Эти нагрузки иногда называют предельными, поскольку они связаны с разрушением конструкции. Использование предельных значений практически исключает возможность действия на сооружение нагрузок, величина которых превышает принятую в расчёте. Обеспеченность предельных нагрузок составляет 0,997…0,999 (точно её определить затруднительно).
В расчётах с более низкими уровнями ответственности (например, расчёты на жесткость и выносливость) используются нормативные нагрузки. Это так называемые эксплуатационные нагрузки, они соответствуют условиям нормальной эксплуатации сооружения.
Сущность железобетона.
Железобетон - конструктивный композиционный материал, в котором бетон и арматура рационально объединены для совместной работы.
Зачем в бетоне устанавливается арматура. Прочность бетона при сжатии примерно в 10 раз выше, чем при растяжении. Поэтому растянутые зоны бетонных конструкций усиливают стальной арматурой, которая замечательно сопротивляется растяжению. Арматура неплохо работает и на сжатие, поэтому сжатые элементы для уменьшения размеров поперечного сечения также армируют стальными стержнями. Чем более полно используются свойства материалов, тем эффективнее оказывается конструкция.
Основные факторы, определяющие совместную работу бетона и арматуры в конструкции
Наличие усилий сцепления в зоне контакта бетона и арматуры;
Близкие значения коэффициентов температурного расширения бетона и арматуры:
a = (10…15) ×10-6 1/°С;
Защитный слой бетона, предохраняющий арматуру от коррозии и высокотемпературного воздействия пожара.
Преимущества и недостатки железобетона
[+] Долговечность, высокая огнестойкость, экономичность при изготовлении и эксплуатации конструкций;
[-] Значительная собственная масса, слабая химическая стойкость, трудности при усилении конструкций или замене их.
Сущность предварительно напряжённого железобетона. При нагружении обычного железобетонного элемента уже при сравнительно небольших усилиях в его растянутых зонах образуются трещины. При дальнейшем увеличении нагрузки растягивающие усилия в сечении с трещиной воспринимает арматура, что приводит к увеличению ширины раскрытия трещин. Чрезмерное раскрытие трещин опасно из-за возможной коррозии арматуры. Для увеличения трещиностойкости железобетонных конструкций применяют предварительное обжатие тех зон бетона, в которых при эксплуатационных нагрузках должны возникнуть растягивающие напряжения. Такие конструкции называют предварительно напряжёнными (рис. П-2).
Преимущества предварительно напряжённых конструкций. Предварительное напряжение повышает трещиностойкость и жесткость конструкций (то есть уменьшает прогибы), способствует повышению их долговечности и коррозионной стойкости, создаёт условия для применения высокопрочной арматуры.
Способствует ли предварительное напряжение повышению прочности конструкций. Предварительное напряжение практически никак не влияет на прочность конструкций, так как к моменту разрушения оно утрачивается и предельные напряжения в арматуре и бетоне определяются только их расчётными сопротивлениями.
Рис. П-2. Сравнительный анализ работы железобетонных элементов с предварительным напряжением арматуры и без него.
а - диаграмма "нагрузка-прогиб" (F-f):
Fcrc - усилие трещинообразования, Fser - эксплуатационная нагрузка;
б - предварительно напряжённая балка (1);
в - балка без предварительного напряжения (2).
Назначение, классы и применение арматуры.
Как отличить рабочую и конструктивную арматуру. В зависимости от функционального назначения арматура бывает рабочей или конструктивной. Площадь сечения рабочей арматуры определяется расчётом на действие внешних нагрузок. Конструктивная (или, как её ещё называют, монтажная) арматура устанавливается без расчёта, по конструктивным или технологическим соображениям.
Конструктивная арматура предназначена для частичного восприятия неучитываемых расчетом усилий (усилий от усадки и ползучести бетона; температурных напряжений, местных напряжений от сосредоточенных сил, случайных напряжений). Арматура, предназначенная для более равномерного распределения сосредоточенного усилия между отдельными стержнями рабочей арматуры, называется распределительной.
Монтажная арматура предназначена для сохранения проектного положения продольной и поперечной арматуры в конструкциях при бетонировании.
Продольная и поперечная арматура. Продольная арматура располагается в направлении продольной оси элемента, поперечная - перпендикулярно ей. Продольная арматура обеспечивает прочность элемента по нормальному сечению, поперечная - по наклонному. Иногда поперечные арматурные стрежни называют хомутами.
Классы арматуры. В зависимости от механических (прочностных и деформативных) характеристик арматура делится на классы. Наиболее часто используемые классы представлены в табл.1. Перечень арматурных изделий с указанием класса, диаметра и массы единицы длины называется сортаментом арматуры.
Некоторые классы арматуры.
Таблица 1.
Наименование | Обыкновенная | Высокопрочная | |||||||
Стержневая горячекатанная | Проволочная | Стержневая | Проволочная | ||||||
Класс | А-I (А240) | А-II (А300) | А-III (А400) | А500 | Bp-I (В500) | А-IV (А600) | А-V (А800) | А-VI (А1000) | Bp - II (В1500) |
Расчётное сопротивление растяжению, МПа | 225 | 280 | 365 (355) | 450 | 410 | 510 | 680 | 815 | 850…1250 |
Вид поверхности | гладкая | периодического профиля (рифлёная) | |||||||
Основной прочностной показатель | Физический предел текучести (σу) | Условный предел текучести (σ0,2) | |||||||
Применение в конструкциях | Для подъёмных петель | Ненапрягаемая рабочая: продольная и поперечная | Напрягаемая рабочая продольная Чем выше класс арматуры, тем больше должен быть класс бетона. | ||||||
Конструктивная |
Почему прочностной характеристикой высокопрочной арматуры является условный предел текучести. Высокопрочная арматура, в отличие от обыкновенной, не имеет физического предела текучести (на диаграмме её деформирования отсутствует площадка текучести). Поэтому в качестве границы безопасной работы высокопрочной арматуры принят условный предел текучести - напряжение, при котором остаточные деформации составляют 0,2%. Напряжения в высокопрочной арматуре могут превышать условный предел текучести, что учитывается в расчётах коэффициентом gs6.
Почему для монтажных петель применяют только арматуру класса А-I. У этого класса арматуры самые высокие пластические свойства, которые позволяют загибать стержни с малыми радиусами кривизны. Если аналогичные петли выполнять из более прочной стали, в них могут появиться трещины, которые приведут к излому петель. Трещины в петлях наиболее опасны в процессе подъёма конструкции.
Почему в качестве напрягаемой применяют только высокопрочную арматуру. В процессе натяжения в арматуре создают напряжения, близкие к её нормативному сопротивлению. Высокопрочная арматура характеризуется высокими значениями нормативного сопротивления, поэтому, в отличие от обыкновенной арматуры, позволяет создавать более высокие значения предварительных напряжений, несмотря на значительные их потери под влиянием различных факторов (ползучести бетона и др.). Величина предварительных напряжений в обыкновенной арматуре невелика и все они будут утрачены в результате потерь.
Почему в конструкциях без предварительного напряжения не применяют высокопрочную арматуру. В конструкциях без предварительного напряжения при действии эксплуатационной нагрузки допустимая ширина раскрытия трещин составляет 0,2…0,3 мм, при этом напряжения в арматуре не превышают 250…300 МПа. Расчётное сопротивление высокопрочной арматуры может достигать 1000 МПа и более, поэтому ей замечательные прочностные возможности в конструкциях без предварительного напряжения будут недоиспользованы.
Почему в элементах с высокопрочной арматурой необходимо применять бетон более высоких классов. Высокопрочная арматура используется в предварительно напряженных конструкциях. Повышение класса бетона в связи с использованием высокопрочной арматуры вызвано необходимостью либо обеспечить требуемую прочность сечений при обжатии, либо уменьшить потери напряжений в напрягаемой арматуре. Для этого необходимо повысить передаточную прочность бетона Rbp, а вместе с ней - и класс бетона.
Почему арматура периодического профиля является более эффективной. Периодический профиль арматуры применяется в целях улучшения её сцепления с бетоном, которое возрастает в 2…3 раза. Использование промасленной, грязной или ржавой арматуры ухудшает сцепление. Надёжное сцепление арматуры с бетоном обеспечивает совместность их деформаций. Ухудшение сцепления приводи к росту прогибов и ширины раскрытия трещин, а нарушение сцепления - к разрушению конструкций.