Смекни!
smekni.com

Проектирование несущих железобетонных конструкций многоэтажного промышленного здания (стр. 5 из 14)

толщина h¢f ≥ 50…60 мм, принимаем h¢f = 60 мм.

Поперечные рёбра

Поперечные ребра панели предусматриваются по её краям, и иногда - по длине пролета (мы их устанавливать не будем). Размеры поперечных ребер назначаем конструктивно (см. рис.3.1.)

3.5 Эквивалентное поперечное сечение панели

При расчете фактическое поперечное сечение панели заменяется эквивалентным тавровым сечением (рис.3.2.) Оно имеет ту же площадь и те же основные размеры.

В расчетах на трещиностойкость, которые мы выполнять не будем, используется приведённое сечение: площадь сечения арматуры приводится к площади сечения бетона, исходя из равенства их деформаций.

Рис.3.1 -

Поперечное и продольное сечение рёбристой панели (а) и панели типа "2Т" (б).

Рис.3.2 -

Эквивалентное поперечное сечение панели.

Полная высота сечения равна высоте панели: h = hn = 350 мм.

Полезная (рабочая) высота сечения h0 = h - a, где

а - расстояние от нижней растянутой грани сечения до центра тяжести продольной рабочей арматуры.

Принимаем а = 3 см, тогда h0 = 35 - 3 = 32 см.

Толщина стенки эквивалентного сечения равна суммарной толщине ребер:

b = 2bm = 2·9 = 18 см.

Толщина полки h¢f = 6 см.

Участки полки, удаленные от ребра, напряжены меньше, чем соседние участки. Поэтому ширина свеса полки в каждую сторону от ребра bef ограничивается двумя условиями (п.3.16 СНиП [2]); она должна быть:

не более 1/6 пролета элемента: befl/6 = 7800/6 = 1300 мм.

в рёбристой панели, когда расстояние между поперечными ребрами больше, чем между продольными:

при h¢f ≥ 0,1h: befс/2

при h¢f < 0,1h: bef ≤ 6 h¢f

В панели типа "2Т": befc1, а также:

при h¢f ≥ 0,1h: bef ≤ 6 h¢f

при 0,05 hh¢f < 0,1h: bef ≤ 3 h¢f

при h¢f < 0,05 h: свесы не учитываются

В данной рёбристой панели 0,1h = 0,1·35 = 3,5 см < h¢f = 6 см, поэтому

befc/2 = 106/2 = 53 см.

Принимаем bef = 53 см, тогда принимаемая в расчете ширина полки b¢f:

b¢f = 2 b2 + 2 bef= 2·10 + 2·53 = 126 см.

В панели типа "2Т": b¢f = 2 b2 + 2 bef + с.

3.5 Подбор продольной рабочей арматуры панели

Определение требуемой продольной рабочей арматуры производят с помощью вспомогательного коэффициента А0:

Все величины в расчётных формулах рекомендуется брать в кН и см:

М = 119,04 кН = 11 904 кН·см; Rb = 22 МПа = 2,2 кН/см2.

По значению коэффициента А0 находим значения относительной высоты сжатой зоны ξ = x / h0 и относительного плеча внутренней пары сил η0 = z0 / h0, используя специальную таблицу или предлагаемые аналитические зависимости:

,

η0 = 1 - 0,5ξ = 0,976.

Фактическая высота сжатой зоны:

х = ξ h0 = 0,0477×32 = 1,53 см < hf´ = 6 см,

поэтому граница сжатой зоны находится в пределах полки.

Для напрягаемой арматуры необходимо использовать коэффициент условий работы γs6, который учитывает увеличение сопротивления арматуры при её деформациях за границей условного предела текучести; этот коэффициент определяется по формуле (27) СНиП [2]:

где η - коэффициент, учитывающий класс арматуры; для арматуры класса А-VI η=1,10 (п.1.13. СНиП [2]). Тогда

поэтому принимаем γs6 = η = 1,10.

Требуемая площадь сечения продольной рабочей арматуры:

По сортаменту арматуры назначаем диаметр стержней так, чтобы он был не менее требуемой величины Аs. Число стержней - 2, по одному в каждом ребре.

Принимаем 2Æ 18 А 1000 (А-VI), Аs = 5,09 см2.

Сортамент арматуры можно найти в Приложении 3. Не следует создавать излишний запас прочности элемента. Переармированные элементы не только неэкономичны, но и опасны (см. Приложение 5).

Толщина защитного слоя бетона аb продольной рабочей арматуры, необходимого для предохранения её от коррозии, должна составлять (п.5.5 СНиП [2]):

не менее диаметра стержня: аbd = 18 мм,

не менее 20 мм (в ребрах высотой h ≥ 250 мм): аb ≥ 20 мм.

Защитный слой бетона - это толщина слоя бетона от грани элемента до ближайшей поверхности арматурного стержня.

Фактическая толщина защитного слоя:

аb = а - 0,5 d = 30 - 0,5·18 = 21 мм > 20 мм,

значит, требования СНиП по величине защитного слоя выполнены.

Если бы указанные требования не выполнялись, расстояние а пришлось бы увеличить, а расчёт (п.3.6.) произвести заново.

3.6 Конструирование поперечной рабочей арматуры панели

Конструирование поперечной арматуры заключается в выборе класса, диаметра и шага поперечных стержней. Обычно конструирование сопровождается расчётом, в результате которого устанавливается, обеспечена ли прочность элемента по наклонному сечению. Однако, учитывая сравнительно небольшой объем курсового проекта, ограничимся лишь конструированием.

Используем поперечную арматуру из проволоки класса Вр-I, диаметром 5 мм (Æ5Вр-I).

Шаг поперечной арматуры назначаем не основе конструктивных требований п.5.27 СНиП [2]:

на приопорных участках длиной, равной ¼ пролета l0= l/4 = 7,8/4 = 1,95 м

при высоте сечения h ≤ 450 мм (в данном случае h = 350 мм) шаг поперечной арматуры должен быть не более:

,

S1 £ 150 мм.

Принимаем S1 = 150 мм (кратно 50 мм), см. прил.1.

на остальной части пролёта при высоте сечения h > 300 мм шаг поперечной арматуры должен быть не более:

,

S2 £ 500 мм.

Принимаем S2 = 250 мм (кратно 50 мм).

При h ≤ 300 мм поперечную арматуру на этом участке допускается не устанавливать.

Поперечные стержни входят в состав плоского каркаса, которому присвоим марку К-1 (см. арматурные чертежи в графической части). Продольные стержни этого каркаса принимаем конструктивно, из арматуры Æ8А-I.

Для возможности свободной укладки каркаса в форму концы всех его стержней должны отстоять от грани элемента на 10 мм (п.5.9 СНиП [2]). Величина защитного слоя бетона для поперечной и конструктивной арматуры в рёбрах высотой h ≥ 250 мм должна быть не менее диаметра стержня и не менее 15 мм (п.5.6 СНиП).

Продольная напрягаемая арматура не входит в состав никаких каркасов, так как приварка к ней стержней ухудшает её прочностные свойства.

Поперечные ребра армируем каркасами К-2. Используем те же виды арматуры, что и для каркаса К-1. Шаг стержня назначаем конструктивно (например, 200 мм).

3.7 Расчет полки панели на местный изгиб

3.7.1 Общие соображения

Плитная часть панели (или просто плита), называемая в тавровом сечении полкой, работает на изгиб как пластина, опёртая по контуру на продольные и поперечные ребра. Работа плиты под действием нагрузок зависит от соотношения сторон опорного контура.

При отношении сторон l2/l1 > 2 (рис.3.3, а), плиты работают в направлении меньшей стороны, а в другом направлении за них работают рёбра. Такие плиты называются балочными, так как их рассчитывают как балки пролётом l1, выделяя из них полосы шириной b = 1 м.

При отношении сторон l2/l1 ≤ 2 (рис.3.3, б), что бывает, например, при частом расположении поперечных рёбер, плиты работают в двух направлениях в плане и их называют за это плитами, опёртыми по контуру. Изгибающие моменты в таких плитах меньше, чем в балочных, поэтому опёртые по контуру плиты являются более эффективными. Следует помнить, что в запас прочности расчёт такой плиты можно провести и по балочной схеме.

Очевидно, что в нашей панели перекрытия, у которой поперечные ребра расположены только по краям, имеем дело с балочной плитой.

3.7.2 Нагрузки на полку панели

Равномерно распределённая нагрузка на полку панели с несущественным превышением может быть принята такой же, как и для всей плиты (табл.2.1). Линейную расчётную нагрузку определяем сбором поверхностной нагрузки с условной ширины b = 1 м:

q = P0 b γn = 13,091·1,0·0,95 = 12,436 кН/м.

3.7.3 Расчётная схема полки, внутренние усилия

В рёбристой панели расчётная схема полки принимается в виде балки с жёсткой заделкой на концах (рис.3.4, а), в панели типа 2Т - в виде двухопорной консольной балки (рис.3.4, б).