Смекни!
smekni.com

Контрольная работа по Материаловедению 2 (стр. 4 из 4)

Основным компонентом стекла является двуокись кремния – кремнезем, температура плавления которого равна 1728°С. Содержание окиси кремния в стекле составляет 50–85%, а в кварцевом стекле 98,8–99,9%. Кремнезем (SiO2) вводят в виде кварцевого песка, молотых кварцитов или песчаников. Основное требование к кремнеземистому сырью – минимальное количество примесей, особенно оксидов железа. Это основной стеклообразующий оксид, повышающий тугоплавкость и химическую стойкость стекла.

Глинозем (А12О3) поступает в сырьевую шихту в виде полевых шпатов и каолина. Его влияние на свойства стекла аналогично действию SiO2.

Оксид натрия (Na2O) вводят в стекло в виде соды и сульфата натрия. Он понижает температуру плавления стекла, повышает коэффициент термического расширения и уменьшает химическую стойкость.

Оксиды кальция (СаО) и магния (MgO) вводят в стекольную шихту в виде мела, мрамора, известняка, доломита и магнезита. Эти оксиды повышают химическую стойкость стекла.

В специальные стекла вводят оксиды бора, свинца, бария и др.

Вспомогательные сырьевые материалы делятся по своему назначении на следующие группы: осветлители – вещества, способствующие удалению из стекломассы газовых пузырей; обесцвечиватели – вещества, обесцвечивающие стекольную массу; глушители – вещества, делающие стекло непрозрачным. Красители для стекла могут быть молекулярными, полностью растворяющимися в стекломассе, и коллоидными, равномерно распределяющимися в стекломассе в виде мельчайших частиц. К первым относятся соединения кобальта (синий цвет), хрома (зеленый), марганца (фиолетовый), железа (коричневый и сине-зеленые тона), а ко вторым – металлическое золото (рубиновый), серебро (желтый), селен (розовый).

Свойства стекла. Силикатные стекла отличаются необычным сочетанием свойств, прозрачностью, абсолютной водонепроницаемостью и универсальной химической стойкостью. Все это объясняется спецификой состава и строения стекла.

Плотность стекла зависит от химического состава и для обычных строительных стекол составляет 2400...2600 кг/м3. Высокой плотностью отличаются стекла, содержащие оксид свинца («богемский хрусталь») — более 3000 кг/м3. Пористость и водопоглощение стекла практически равны 0 %.

Стекло в строительных конструкциях чаще подвергается изгибу, растяжению и удару и реже сжатию, поэтому главными показателями, определяющими его механические свойства, следует считать прочность при растяжении и хрупкость.

Теоретическая прочность стекла при растяжении – (10...12)•103 МПа. Практически же эта величина ниже в 200...300 раз и составляет от 30 до 60 МПа. Это объясняется тем, что в стекле имеются ослабленные участки (микронеоднородности, дефекты поверхности, внутренние напряжения). Чем больше размер стеклоизделий, тем вероятнее наличие таких участков. Сильно снижают прочность стекла на растяжение царапины, на этом основана резка стекла алмазом.

Прочность стекла при сжатии высока – 900... 1000 МПа, т. е. почти как у стали и чугуна. В диапазоне температур от –50 до +70°С прочность стекла практически не изменяется.

Хрупкость – главный недостаток стекла. Основной показатель хрупкости – отношение модуля упругости к прочности при растяжении E/Rp. У стекла оно составляет 1300...1500. Кроме того, однородность строения стекла способствует беспрепятственному развитию трещин, что является необходимым условием для проявления хрупкости.

Твердость стекла, представляющего собой по химическому составу вещество, близкое к полевым шпатам, такая же, как у этих минералов, и в зависимости от химического состава находится в пределах 5...7 по шкале Мооса.

Оптические свойства стекла характеризуются светопропусканием (прозрачностью), светопреломлением, отражением, рассеиванием и др. Обычные силикатные стекла, кроме специальных, пропускают всю видимую часть спектра (до 88...92 %) и практически не пропускает ультрафиолетовые и инфракрасные лучи. При изменении угла падения света с 0 до 75° светопропускание стекла уменьшается с 90 до 50 %.

Теплопроводность различных видов стекла мало зависит от их состава и составляет 0,6...0,8 Вт/(м•К), что почти в 10 раз ниже, чем у аналогичных кристаллических минералов.

Коэффициент линейного температурного расширения (КЛТР) стекла относительно невелик (для обычного стекла 9•10-6 К-1). Но из-за низкой теплопроводности и высокого модуля упругости напряжения, развивающиеся в стекле при резком одностороннем нагреве (или охлаждении), могут достигать значений, приводящих к разрушению стекла. Это объясняет относительно малую термостойкость (способность выдерживать резкие перепады температур) обычного стекла. Она составляет 70...90° С.

Звукоизолирующая способность стекла довольно высока. Стекло толщиной 1 см по звукоизоляции приблизительно соответствует кирпичной стене в полкирпича – 12 см.

Химическая стойкость силикатного стекла – одно из самых уникальных его свойств. Стекло хорошо противостоит действию воды, щелочей и кислот (за исключением плавиковой и фосфорной). Объясняется это тем, что при действии воды и водных растворов из наружного слоя стекла вымываются ионы Na+ и Са++ и образуется химически стойкая пленка, обогащенная SiO2. Эта пленка защищает стекло от дальнейшего разрушения.


Заключение

Морозостойкость – свойство насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения и без значительного понижения прочности.

Методы определения морозостойкости. Базовые – первый (для всех видов бетонов, кроме бетонов дорожных и аэродромных покрытий) и второй (для бетонов дорожных и аэродромных покрытий); ускоренные при многократном замораживании и оттаивании – второй и третий; ускоренные при однократном замораживании – четвертый (дилатометрический) и пятый (структурно-механический).

Изверженные горные породы применяемые в строительстве подразделяют на глубинные, излившиеся и обломочные.

Основной причиной разрушения природных каменных материалов в строительных конструкциях является физико-химическое воздействие воды, которое проявляется в растворяющей способности воды, особенно если она содержит растворенные газы (СО2, SО2 и др.); в замерзании воды в порах и трещинах, вызывающее внутреннее напряжение.

Все мероприятия по защите каменных материалов от разрушения направлены на предохранение их от воздействия воды и на повышение поверхностной плотности. Эти меры могут быть конструктивными и физико-химическими.

Керамика в роли отделочного материала применяется издавна и широко. Это объясняется как декоративностью керамики, так и ее стойкостью и долговечностью. Облицовка керамикой не только придает декоративность, но и защищает конструкцию от внешних воздействий. Различают отделочную керамику для наружной и внутренней облицовки, а также для покрытия полов. Для каждой области применения используют керамику с различным строением черепка и соответственно с разными свойствами.

Керамзит – это легкий пористый строительный материал ячеистого строения в виде гравия (иногда в виде щебня или песка), универсальный экологически чистый утеплитель.

Преимущественно керамзит применяют в качестве заполнителя для легких бетонов и в качестве теплоизоляционного материала в виде засыпок.

Стекло – неорганическое изотропное вещество, материал, известный и используемый с древнейших времён. Исходными материалами для получения искусственной стекольной массы являются кварцевый песок, кальцинированная сода, поташ, сульфат натрия, мел и известняк, карбонат магния, доломит, карбонат бария, натриевая и калиевая селитры.

Силикатные стекла отличаются необычным сочетанием свойств, прозрачностью, абсолютной водонепроницаемостью и универсальной химической стойкостью.

Литература

1. Айрапетова Г.А., Несветаева Г.В. Строительные материалы. Учебно-справочное пособие (Серия «Строительство».) - Ростов Н/Д: изд-во «Феникс», 2004. - 608 с.

2. Алексеев В. С. Материаловедение: конспект лекций / В. С. Алексеев. - М.: Эксмо, 2008. - 160 с.

3. Барташевич, А. А. Материаловедение: учебное пособие / А. А. Барташевич, Л. М. Бахар. - Ростов н/Д. : Феникс, 2004. - 352 с.

4. Горбунов, Г. И. Основы строительного материаловедения (состав, химические связи, структура и свойства строительных материалов): учебное пособие для вузов – М.: Ассоциация строительных вузов, 2002. - 168 с.

5. Горчаков Г.Н. Баженов Ю.М. Строительные материалы. Учеб. Для вузов. (ред. Строительные материалы и контрукции) – М.: Строиздат, 1986.- 688с.

6. Домокеев А.Г. Строительные материалы. Учебник. – М.: Высш. школа, 1982.- 383с.

7. Елизаров Ю. Д. Материаловедение для экономистов: учебник / Ю. Д. Елизаров, А. Ф. Шепелев. - Ростов н/Д: Феникс, 2002. - 576 с.

8. Материаловедение: учебник для вузов / ред.: А. А. Арзамасов, Г. Г. Мухин. - 5-е изд., стереотип. - М.: МГТУ им. Н. Э. Баумана, 2003. - 648 с.

9. Материаловедение и технология конструкционных материалов: учебник для студ. вузов / ред.: А. А. Арзамасов, А. А. Черепахин. - М.: Академия, 2007. - 448 с.

10. Рыбьев И. А. Строительное материаловедение: учебное пособие для студен. вузов – М.: Высш. шк., 2002. - 701 с.

11. Строительные материалы (Материаловедение. Строительные материалы): учебник / В. Г. Микульский [и др.]; - М.: Ассоциация строительных вузов, 2004. - 536 с.