Смекни!
smekni.com

Железобетонные конструкции каркаса многоэтажного промышленного здания (стр. 9 из 14)

· В соответствии с п. 5.21. СНиП [2] в изгибаемых элементах при высоте сечения h > 700 мм у боковых граней должны ставиться конструктивные продольные стержни с расстояниями между ними по высоте не более 400 мм. Устанавливаем посередине высоты сечения арматурные стержни Æ10А-I. Плоские сварные каркасы К-1 (2 шт.) объединяем в пространственный каркас с помощью горизонтальных поперечных стержней, устанавливаемых через 1,0...1,5 м.

· Стык ригеля и колонны. В верхней части стыка выпуски арматуры из колонны и ригеля соединяются вставкой арматуры на ванной сварке, затем полость стыка замоноличивается. Вставка арматуры повышает точность монтажного соединения в случае нарушения соосности выпусков арматуры. В нижней части стыка монтажными сварными швами соединяются закладные детали колонны и ригеля. Температурный зазор между торцом ригеля и гранью колонны может составлять 60…100 мм.

5. Расчёт и конструирование колонны

5.1. Подбор продольной арматуры

· В колоннах средних рядов здания изгибающие моменты М незначительны, поэтому можно принять, что колонна воспринимает только продольные усилия N и работает в условиях внецентренного сжатия со случайным эксцентриситетом.

4 При действии значительных изгибающих моментов М колонна является внецентренно сжатой с расчётным эксцентриситетом e = M/N.

· Подбор продольной арматуры достаточно провести для наиболее нагруженной колонны 1-го этажа, а в колонных остальных этажей принять его таким же. Расчётное продольное усилие в колонне 1-го этажа: Nk = 3 514 кН (п. 2.4.4).

· Расчётная длина колонны принимается равной высоте этажа: l0 = Нэ = 4,2 м.

· Классы бетона и арматуры для колонны принимаются такими же, как и у ригеля перекрытия (п. 4.1). Коэффициент длительности действия нагрузки gb2 = 0,9.

· Продольное армирование колонны назначается из условия прочности, которое имеет вид:

Nk £ j (Rb gb2 A + Rsc As,tot),

где j – коэффициент, учитывающий влияние продольного изгиба; принимается по справочной таблице в зависимости от отношения расчётной длины колонны к её ширине: l0/hk = 4,2/0,45 = 9,33; тогда коэффициент j = 0,9.

l0/hk

6…12

16

20

j

0,9

0,8

0,7

А – площадь поперечного (бетонного) сечения колонны: A = (bk)2 = 452 = 2025 см2.

Rsc – расчётное сопротивление продольной арматуры сжатию; для арматуры класса A-III (А400) Rsc = 365 МПа.

As,tot – суммарная площадь продольной арматуры колонны, которую необходимо определить в результате расчёта.

· Требуемая площадь сечения продольной арматуры As,tot назначается из двух равноправных условий:

4 из условия прочности:

.

4 из условия обеспечения минимального коэффициента армирования

m min = 0,002 (0,2%): As,tot ³ 2A×m min = 2×2025×0,002 = 8,1 см2.

· Принимаем по сортаменту As,tot = 40,72 см2(4Æ36 A-III).

· Устанавливаем 4 арматурных стержня по углам колонны (рис. 5.1).

4 Допускается применять для армирования колонны 6 стержней, однако в данном случае этот вариант является менее выгодным.

5.2. Конструирование поперечной арматуры колонны

· Поперечная арматура в колоннах устанавливается в целях:

1. Образования пространственных каркасов.

2. Предотвращения выпучивания продольных стержней.

3. Сдерживания поперечных деформаций бетона.

· Диаметр поперечной арматуры d назначается из условия свариваемости с продольными арматурными стержнями колонны диаметром D:

d ³ 0,25D = 0,25×36 = 9 мм. Принимаем поперечную арматуру Æ10 A-III.

· Шаг поперечных арматурных стержней не должен превышать

s £ 20D = 20×36 = 720 мм; s £ 500 мм. Принимаем s = 500 мм (кратно 50 мм).

· Для усиления концевых участков у торцов колонн дополнительно устанавливаем сетки косвенного армирования из арматуры Æ8 A-I, размер ячеек 50´50 мм. Назначаем 5 сеток с шагом 75 мм.

· Толщина защитного слоя бетона аb для продольной рабочей арматуры колонны (см. рис. 5.1) должна составлять (п. 5.5 СНиП [2]):

4 не менее диаметра стержня: аbD = 36 мм,

4 не менее 20 мм: аb ≥ 20 мм.

Требуемое расстояние от наружной грани колонны до центра тяжести продольной арматуры: а ³ аb + 0,5D = 36 + 0,5·36 = 54 мм. Принимаем a = 55 мм, тогда

фактическая толщина защитного слоя: аb = а – 0,5D = 55 – 0,5·36 = 37 мм > 36 мм.

· Толщина защитного слоя бетона аbw для поперечной арматуры колонны должна составлять (п. 5.5 СНиП [2]):

4 не менее диаметра стержня: аbwd = 10 мм,

4 не менее 15 мм: аbw ≥ 15 мм.

Фактическая толщина защитного слоя: аbw = аbd = 37 – 10 = 27 мм > 15 мм.

Таким образом, требования по величине защитного слоя выполнены.

6. Расчёт и конструирование фундамента

6.1. Общие соображения

· Проектируем отдельный монолитный фундамент мелкого заложения под колонну.

4 Основные понятия: обрез фундамента – это его верхняя грань, подошва фундамента – это нижняя грань, основание – это грунт под подошвой фундамента, глубина заложения подошвы фундамента – это расстояние от наружной поверхности земли до подошвы фундамента.

· Глубина заложения подошвы фундамента назначается исходя из инженерно-геологических условий площадки строительства, климатических воздействий на верхние слои грунта (в том числе условий промерзания грунта), а также конструктивных особенностей возводимого и соседних сооружений и составляет (по заданию) df = 1,3 м.

· Пол 1-го этажа выполняется по грунту. Заглубление обреза фундамента относительно уровня пола 1-го этажа: d0 = 0,15 м.

· Высота фундамента: hf= dfd0 = 1,30 – 0,15 = 1,15 м.

· Расчётное сопротивление грунта основания (по заданию):

R0 = 0,25 МПа = 250 кН/м2.

· Средний удельный вес фундамента с грунтом на его уступах: gm = 20 кН/м3.

· Классы бетона и арматуры для фундамента принимаются такими же, как и у ригеля перекрытия (п. 4.1). Коэффициент длительности действия нагрузки gb2 = 0,9.

· Под фундаментом предусматривается бетонная подготовка толщиной 100 мм из бетона класса В3,5.

· Фундамент под колонну, сжатую со случайным эксцентриситетом, воспринимает в основном только продольную силу, поэтому его можно считать центрально нагруженным. Продольные усилия на уровне верха фундамента допускается принимать такими же, как на уровне пола 1-го этажа (п. 2.4.4):

нормативное усилие Nk.n = 3 123 кН; расчётное усилие Nk = 3 514 кН.

Центрально нагруженные фундаменты обычно проектируют квадратными в плане.

4 Внецентренно нагруженные колонны и фундаменты проектируют прямоугольными, при этом широкая сторона располагается в плоскости действия изгибающего момента.