Часть2.
х1х2х3х4
х5х6х7х8
(х1х8)(х2х8)(х3х8)(х4х8)
(х1х7)(х2х7)(х3х7)(х4х7)
(х1х6)(х2х6)(х3х6)(х4х6)
(х1х5)(х2х5)(х3х5)(х4х5)
х3х8 | Х4х7 | Y7 | Р1 |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 |
Y7=(а+b)+(a+b); a=x3x8; b=x4x7 P1=ab
a | b | c | P1 | P2 | Y6 | P2’ |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 1 |
П
ослеупрощенияY6=(cp1+cp1)(ab+ab)+(cp1+cp1)(ab+ab)P
2=a(bp1+bp1)+p1(bc+bc)+abc a=x2x8;b=x3x7;c=x4x6P2’=abcp1
a | b | c | d | P2 | P3 | Y5 | P3’ |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
После упрощения:
Y
5=(dp2+dp2)(a(bc+bc)+a(bc+bc))+(dp2+dp2)c(ab+ab)P
3=bd(ac+ac)+cp2(ac+ab)+ab(cp2+cp2)+dp2(ab+ab)+abcp2P
3=bd(ac+ac)+cp2(ad+ad)+(ab+ab)(dp2+cp2)+abcp2a=x1x8;b=x2x7;c=x3x6;d=x4x5A | b | c | P2’ | P3 | P4 | Y4 | P4’ |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
После упрощения:
Y
4=(p2’p3+p2’p3)(abc+abc+abc)+ap2’p3(bc+bc)+abcp2’+abcp2’p3P
4=(p2’+p3)b(ac+ac)+abc(p2’+p3)+abp(p2’+c)+abc(p2’+p3)+abcp2’p3P4’=p2’p3(bc+ac+ab)+abc(p2’+p3) a=x1x7;b=x2x6;c=x3x5
A | b | P3’ | P4 | P5 | Y3 |
0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 |
После упрощения:
Y
3=(ab+ab)(p3’p4+p3’p4)+(ab+ab)(p3’p4+p3’p4)P
5=p4b(a+p3’)+b(ap3’+p3’p4+ap4)a=x1x6;b=x2x5
A | P4’ | P5 | P6 | Y2 |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
После упрощений:
Y
2=p4’(ap5+ap5)+p4’(ap5+ap5)P6=p4’p5+a(p4’+p5) a=x1x5
Y1=P6=p4’p5+a(p4’+p5)
Y8=x4x8
Часть 1.
|
Условия: 1.(t+1)=2t+P(t)
2. Пустьсхема Р будетвырабатыватьеденицу тольков нулевом, еденичномсостоянии ив состоянии«6».
3. Начальноесостояниепримем “11”
Число | Х1 | Х2 | Х3 | Х4 | Х5 |
11 | 0 | 1 | 0 | 1 | 1 |
22 | 1 | 0 | 1 | 1 | 0 |
12 | 0 | 1 | 1 | 0 | 0 |
24 | 1 | 1 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 1 | 1 |
6 | 0 | 0 | 1 | 1 | 0 |
13 | 0 | 0 | 1 | 1 | 0 |
26 | 0 | 1 | 1 | 0 | 1 |
20 | 1 | 1 | 0 | 1 | 0 |
8 | 0 | 1 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 |
У
=х1х2х3х4х5+х1х2х3х4х5+х1х2х3х4х5=х1х3х4х5(х2+х2)+х1х2х3х4х5==
(х1+х3+х4+х5)+(х1+х2+х3+х4+х5)