Коэффициент лобового сопротивления определяют экспериментальным методом путем продувки автомобиля или его модели в аэродинамических трубах. От величины CX Вашего автомобиля в прямой зависимости находится количество расходуемого им топлива, а значит и денежная сумма оставляемая Вами у бензоколонки. Поэтому конструкторы всех фирм-производителей автомобильной техники постоянно пытаются снизить коэффициент лобового сопротивления своих творений. CX для лучших образцов современных автомобилей составляет величину порядка 0,28-0,25. Для примера, величина коэффициента лобового сопротивления "седьмого вазовского классического кирпича" составляет 0,46. Комментарии излишни. Наименьшим же коэффициентом отличаются автомобили, предназначенные для установления рекордов скорости - CX порядка 0,2-0,15.
Однако аэродинамика влияет не только на скоростные качества автомобиля и расход топлива. В ее компетенцию входят также задачи обеспечения должного уровня курсовой устойчивости, управляемости автомобиля, снижения шумов при его движении.
Особое внимание заслуживает влияние аэродинамики на устойчивость и управляемость автомобилем. Это в первую очередь связано с возникновением подъемной силы, которая серьезно влияет на ходовые качества машины - уменьшает силу сцепление колес с дорогой, а в некоторых случаях может быть одной из причин опрокидывания автомобиля. Причина появления подъемной силы у автомобиля кроется в форме его профиля. Длины путей движения воздуха под автомобилем и над ним существенно разняться, следовательно, обтекаемому сверху воздушному потоку приходится проходить его с большей скоростью, нежели потоку движущемуся внизу автомобиля. Далее вступает в действие закон Бернулли, по которому, чем больше скорость, тем меньше давление и наоборот. Поэтому внизу автомобиля создается область повышенного давления, а сверху - пониженного. В результате получаем подъемную силу. Конструкторы стремятся всякими ухищрениями свести ее к нулю, и частенько это им удается. Так, например, у "десятки" нулевая подъемная сила, а у "восьмерки" существует тенденция к подъему. Избавиться от подъемной силы можно установкой антикрыльев. Они создают дополнительную прижимную силу, хотя несколько и ухудшают общее аэродинамическое сопротивление. Следует заметить, что используются они в основном на гоночных болидах. Не следует путать между собой антикрыло и спойлер. Каждый из них выполняет свою задачу. Спойлеры, которые устанавливаются на серийные модели легковых автомобилей, предназначены в большей степени для лучшей организации движения потока воздуха.
На устойчивость автомобиля влияет и характер обтекания кузова воздушными потоками, направленными под определенным углом к его продольной оси. В этом случае результирующая сила лобового сопротивления, приложенная к его центру парусности, который находится на некотором расстоянии от поверхности контакта автомобиля с дорогой, а также смещен от его центра масс, создает разворачивающий момент и крен автомобиля. Ощутить всю прелесть данного явления можно, например, на "Таврии" при движении на высокой скорости в момент прохождения рядом "фуры".
Аэродинамические шумы, возникающие при движении автомобиля, свидетельствуют о плохой его аэродинамике или же о ее отсутствии вообще. Генерируются они за счет вибраций элементов кузова в моменты срыва воздушного потока с их поверхности. По наличию или отсутствию шумов на высоких скоростях движения можно определить степень проработки конструкции автомобиля в аэродинамическом смысле.
Как Вы понимаете, просчитать такое огромное количество параметров аэродинамики автомобиля невозможно. Поэтому ее созданием и доводкой конструкторы занимаются путем многочисленных продувок в аэродинамических трубах, как моделей автомобилей, так и натурных образцов.
Как оценить потери мощности на качение шин? Если дорога имеет твердое, ровное покрытие, а давление в шинах нормальное, то в широком диапазоне скоростей (примерно до 60–70% от максимальной) сила сопротивления качению шин почти постоянна и, по данным ряда исследований, составляет 0,013–0,015 полного веса машины. На скоростях 150–160 км/ч этот коэффициент может увеличиваться в зависимости от особенностей шины, давления в ней, температуры и т. д. до значений 0,019–0,020.
А вот другая составляющая пространства – это воздух. Чем быстрее едешь, тем сильнее его сопротивление. На очень высоких скоростях воздух становится "железным": так, на некоторых боевых самолетах при энергичных маневрах один квадратный метр крыла испытывает нагрузку до нескольких тонн! Сопротивление воздуха – главный враг высоких
скоростных показателей.Соотношение мощности к скорости
Так изменяется необходимая для движения мощность в зависимости от скорости автомобиля: N – мощность, л.с.;
V – скорость, км/ч (м/с); Cx – коэффициент аэродинамического сопротивления;
S – "лобовая площадь" автомобиля; 1 – расчетная мощность, с учетом изменения потерь на качение шин по скорости;
2, 6 – характеристики максимальной ("располагаемой") мощности двигателей ВАЗ-2103 и ВАЗ-2101;
3, 4 – результаты расчета для попутного и встречного ветра 5 м/с;
5 – расчетная кривая необходимой мощности для современного автомобиля со сниженным аэродинамическим сопротивлением Сх = 0,3.
Этот «враг» по-настоящему серьезен, так как резко увеличивается с ростом скорости: увеличили ее втрое – сила сопротивления подскочила в девять раз! Она пропорциональна квадрату скорости. Но чтобы вычислить аэродинамическое сопротивление автомобиля, достаточно знать два важных его показателя. Во-первых, коэффциент аэродинамического сопротивления Cx . Его называют коэффициентом формы – вполне справедливо, так как он указывает именно на совершенство формы. "Це-икс" грузовиков и мотоциклов может достигать 0,6–1,0, для легковых машин типа "жигулей" составляет примерно 0,45, у лучших современных автомобилей – ниже 0,3. Во-вторых, максимальная площадь поперечного сечения машины S (лобовая площадь).
Поле потока вокруг легкового автомобиля
Вообще, оценивая различные тела, которые перемещаются в воздушном пространстве, можно понять, что «грамотная» форма объекта – это необходимое условие, чтобы перемещение было менее трудным.
На рисунке сравниваются тела с одинаковым отношением длины к высоте l//h или длины к диаметру l//d (это отношение иногда называют коэффициентом полноты тела); фактор близости основания (т.е. поверхности дороги) при таком рассмотрении может не учитываться.
Аэродинамическое сопротивление тела вращения (Cx~0,05) состоит преимущественно из сопротивления трения; предельный случай чистого сопротивления трения имеет место при продольном обтекании плоской пластины. Для этого вида сопротивления имеется хорошая теоретическая база. Влияние вязкости воздуха заметно только в очень тонкой, прилежащей к стенкам зоне, называемой пограничным слоем. Основываясь на экспериментально определенных законах распределения касательных напряжений вдоль стенок, можно рассчитать характеристики этого пограничного слоя, например его толщину, касательное напряжение вдоль стенки, место отрыва, для этого лишь необходимо, чтобы был предварительно рассчитан внешний поток, который в данном случае рассматривается как идеальный, т.е. не обладающий вязкостью. Таким образом, можно провести оптимизацию, например, тела вращения, т.е. для тела с предварительно заданным отношением l//h и предварительно заданным объемом можно рассчитать форму, обеспечивающую минимальное аэродинамическое сопротивление. В дальнейшем можно, используя теоретические преобразования, пересчитать полученные для этого тела результаты применительно к телу, напоминающему автомобиль. Однако с уменьшением коэффициента полноты l//d сопоставимость теоретических расчетов с экспериментальными данными ухудшается. Причина этого заключается в отличие давлений, рассчитанных теоретически и имеющих место в реальных условиях, в области отрываемого потока (базовое давление, в отечественной литературе этот параметр часто называют донным давлением).
Аэродинамическое сопротивление прямоугольного параллелепипеда, обтекаемого продольным потоком (Cx~0,9) является в основном сопротивлением давления, в чистой форме этот вид сопротивления имеет место при обтекании плоской пластины, расположенной поперечно к потоку. Но даже в этом простом случае - простом в смысле того, что место отрыва однозначно определено острыми кромками - сопротивление давления в интересующем нас случае турбулентного потока в вихревом следе за пластиной не подается расчету. Обратное действие области возмущенного потока, в которой существенно влияние трения, на идеальный, не обладающий вязкостью внешний поток гораздо сильнее, чем в случае пограничного слоя. Общепризнанной модели для вихревого следа за телом, несмотря на интенсивные работы по ее созданию, до сих пор нет. Итеративное рассмотрение идеального, не обладающего вязкостью, а затем реального, обладающего вязкостью, потока - как в случае пограничного слоя - невозможно. Решение полных уравнений движения, так называемых уравнений Навье-Стокса, возможно только для ламинарного потока, когда закон изменения касательных напряжений известен; в случае турбулентного потока из-за отсутствия подходящего закона изменения касательных напряжений, не говоря уже о проблемах вычисления, такого решения нет.
Легковой автомобиль, несмотря на меньшее по сравнению с параллелепипедом аэродинамическое сопротивление, по механике потока ближе к параллелепипеду и сильно удален от тела вращения. Как будет показано в двух последующих разделах, обтекание автомобиля сопровождается отрывами, а его аэродинамическое сопротивление является пре-имущественно сопротивлением давления.