Смекни!
smekni.com

Автомобили (стр. 1 из 2)

Министерство образования и науки Украины

Севастопольский национальный технический университет

Кафедра Автомобильного транспорта

ЛАБОРАТОРНАЯ РАБОТА № 2,3,4

по дисциплине

"Автомобили"

Выполнил:

Студент гр. АВ – 42 - З

№ зач. кн.051463

Ченакал А.В.

Проверил:

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

Севастополь 2008 г.

ЛАБОРАТОРНАЯ РАБОТА № 2

1. ИССЛЕДОВАНИЕ УПРУГИХ ХАРАКТЕРИСТИК РЕССОРНОЙ ПОДВЕСКИ

Цель работы: изучить особенности рессорной подвески, исследовать упругую характеристику рессорной подвески.

Общие сведения

Рисунок 1 - Кинематическая схема и характеристика одинарного стального упругого элемента

Рисунок 2 - Кинематическая схема и характеристика стального упругого элемента с резиновым буфером-ограничителем:

1 - стальной упругий элемент; 2 - резиновый буфер-ограничитель;

- деформация стального упругого элемента;
- совместная деформация стального и резинового упругих элементов

2. Экспериментальная часть

По полученной линейной характеристике рассчитать жесткость рессоры

, (1.1)

где

- приращение силы упругости, Н,
- приращение деформации, мм.

Теоретически жесткость симметричной рессоры можно рассчитать по формуле:

, (1.2)

где Е - модуль продольной упругости, для стали Е=210 ГПа, L- расстояние между точками крепления рессор,

- суммарный момент инерции поперечного сечения рессоры.

Для прямоугольного сечения размерами

.

, (1.3)

Рисунок 2 – Схема экспериментальной установки

1 – динамометр, 2 – винт, 3 – рессора, 4 – измерительная линейка, 5 - рама


Таблица 1 - Результаты измерений и вычислений

Опыт Перемещение f, мм Показание индикатора, мкм Сила упругости, Fупр, Н Жесткость, С, Н/м
Практ. Ср. Теор.
Одиночная рессора с упругим резиновым элементом 5 43 168
10 94 367
15 143 558
20 256 998
22 370 1443
Лист №1 5 18 70 14040 14024 13776
L, м 0,84 10 37 144 14430
b, м 0,045 15 53 207 13780
h, м 0,006 20 71 277 13845
Лист №2 5 28 109 21840 21564 21426
L, м 0,725 10 55 215 21450
b, м 0,045 15 82 320 21320
h, м 0,006 20 111 433 21645
Лист №3 5 43 168 33540 36108 35971
L, м 0,61 10 94 367 36660
b, м 0,045 15 143 558 37180
h, м 0,006 20 190 741 37050
Рессора в сборе 3 32 125 41600 40564 41327
L, м 0,84 6 63 246 40950
b, м 0,045 9 91 355 39433
h, м 0,006 12 122 476 39650
n 3 15 157 612 40820
18 195 761 42250
21 211 823 39186
24 250 975 40625

Рисунок 3 – Экспериментальная характеристика стального упругого элемента с резиновым буфером-ограничителем

Рисунок 4 – Экспериментальная характеристика стального упругого элемента (рессора в сборе и листы, входящие в нее)

ЛАБОРАТОРНАЯ РАБОТА № 3

1. ИЗУЧЕНИЕ КОНСТРУКЦИИ, ПРИНЦИПА ДЕЙСТВИЯ И СИЛОВОЙ ХАРАКТЕРИСТИКИ ТЕЛЕСКОПИЧЕСКИХ ГИДРАВЛИЧЕСКИХ АМОРТИЗАТОРОВ

Цель работы - изучить устройство и принцип действия телескопических гидравлических амортизаторов и исследовать силовую характеристику.

Общие сведения

Амортизатор служит для гашения колебаний кузова, которые возникают из-за работы упругого элемента. Жесткость амортизатора определяет скорость гашения колебаний.

Все гидравлические телескопические амортизаторы по своей конструкции подразделяются на три категории:

Гидравлические двухтрубные амортизаторы

Газонаполненные двухтрубные амортизаторы низкого давления

Однотрубные высокого давления

Сопротивление при сжатии в общем случае составляет 20 - 25% сопротивления при отдаче, так как необходимо чтобы амортизатор гасил свободные колебания подвески при отдаче и не увеличивал жесткость подвески при сжатии.

Сопротивление амортизатора определяется размерами отверстий в корпусах клапанов отдачи и сжатия и усилиями их пружин.


Рисунок 1 – Кинематическая схема амортизатора

1 – поршень, 2 – клапан сжатия, 3 – клапан отбоя, 4 – шток, 5 – перепускной клапан отбоя, 6 – перепускной клапан сжатия, 7 – рабочий цилиндр, 8 – резервуар, А – надпоршневое пространство, Б – подпоршневое пространство, В – полость резервуара

1.1 Принцип действия двухтрубного телескопического амортизатора

Во время хода сжатия рессоры, шток 4 и поршень 1, опускаясь вниз, вытесняют основную часть жидкости из пространства под поршнем Б в пространство над поршнем А через клапан сжатия 2. При этом часть жидкости, равная объему штока, вводимого в рабочий цилиндр, через отверстие перепускного клапана 6 сжатия перетекает в полость В резервуара.

Во время хода отдачи поршень движется вверх и сжимает жидкость, находящуюся, над поршнем. Клапан сжатия 2 закрывается, и жидкость через внутренний ряд отверстий и клапан 3 отдачи перетекает в пространство под поршнем Б. При этом часть жидкости, равная объему штока 4, выводимого из цилиндра, через отверстия перепускного клапана отдачи 5 из полости резервуара В перетекает в рабочий цилиндр 7.

2. Экспериментальная часть

Рисунок 2 – Схема экспериментальной установки

1 – компрессор, 2 – распределитель, 3 – пневмоцилиндр, 4 – рычаг, 5 - амортизатор

Результаты измерений:

Диаметр поршня

мм, диаметр штока
мм, ход амортизатора
мм, передаточное число стенда
, давление механических потерь
МПа

Порядок проведения теоретических расчетов:

Усилие на поршне цилиндра:

(1.1)

где

- площадь поршня и площадь штока соответственно.

Усилие на штоке амортизатора:

(1.1)

Усилие механических потерь:

(1.1)

Значение эффективной силы сжатия на ходе сжатия и растяжения:

(1.1)

Скорость перемещения на ходе сжатия и отбоя:

,
(1.1)

Таблица 1 – Экспериментальные данные и результаты расчетов

Pсж,Мпа Ротб,Мпа tсж,с tотб,с F1сж,Н F1отб,Н F2сж,Н F2отб,Н F0,Н F2`сж,Н F2`отб,Н Vсж,м/с Vотб,м/с
0, 19 0,25 0,4 0,85 1209 1276 882 932 139 743 792 0,463 0,218
0,17 0,2 0,46 1,05 1081 1021 789 745 139 650 606 0,402 0,176
0,15 0,175 0,53 1,16 954 893 697 652 139 557 513 0,349 0,159
0,12 0,16 0,68 1,25 763 817 557 596 139 418 457 0,272 0,148
0,105 0,14 0,76 1,43 668 715 488 522 139 348 382 0,243 0,129
0,085 0,125 0,87 1,55 541 638 395 466 139 255 327 0,213 0,119
0,07 0,1 0,99 1,87 445 511 325 373 139 186 233 0,187 0,099
0,06 0,08 1,08 2,31 382 408 279 298 139 139 159 0,171 0,080