Внутренняя компенсация с мягкой диафрагмой разделяет полость между носком элерона и крылом на полости с повышенным Давлением— А и пониженным — Б, что создает дополнительный момент —
(см. рис. 2, б), уменьшающий значение Mш. Это позволяет при том же значении уменьшить усилие Tв системе управления и на командных рычагах управления.Сервокомпенсация осуществляется за счет различных видов сервокомпенсаторов. Сервокомпенсатор — часть поверхности элерона (руля) у задней кромки, кинематически связанная с крылом (стабилизатором, килем) тягой 13 (рис. 4.14, в) таким образом, что при отклонении элерона (руля) 5 она отклоняется в противоположную сторону, уменьшая шарнирный момент Мш- Сравните рис. 2, а и 3, в.
Величина Мшзависит как от угла отклонения элерона б, так и от скоростного напора q. При малых значениях б и особенно qсервокомпенсация не нужна, так как значение Мши усилия на командных рычагах и без того малые. С увеличением же значений Мшсервокомпенсация становится нужной и тем в большей степени, чем больше значения qи б. Включение упругого элемента (пружины), имеющего предварительную затяжку, в систему управления элерон — сервокомпенсатор (рис. 4.14, г) позволяет повысить «чувствительность» системы управления к qи б. При малых усилиях на рычагах управления (малы значения qи б) система элерон — сервокомпенсатор работает как единое целое (усилия на пружину 10 (см. рис. 3, г) меньше, чем усилия ее предварительной затяжки). С ростом значений qи б возрастают усилия в системе управления (в том числе, и в тяге 11). Когда усилия на пружину станут больше, чем усилия ее предварительной затяжки, двухплечный рычаг 12 провернется и через тягу 13 отклонит сервокомпенсатор 9 в сторону, противоположную отклонению элерона 5, уменьшая значения Мш.Такой компенсатор называется пружинным сервокомпенсатором. Применяется он обычно вместе с другими видами компенсации (например, с осевой компенсацией). Недостатком такой компенсации является уменьшение эффективности элерона, так как направление усилий Yэли Yск противоположно (см. рис. 4.14, в). Кроме того, сервокомпенсатор может послужить причиной возникновения опасных вибраций (особенно при недостаточной затяжке пружин 10 и плохой регулировке длины тяги 13). Конструкция сервокомпенсатора подобна конструкции триммера, назначение и конструкция которого будут рассмотрены ниже.
5. Триммер 1 (см. рис. 2, в и рис. 3, а)— вспомогательная рулевая поверхность, расположенная в хвостовой части элерона (руля) 5 и предназначенная для уменьшения (снятия) усилий на рычагах управления самолетом при изменении режима полета. Сила на триммере Yт, подобно тому, как и сила Yск, создает момент Mт=Yтbотносительно оси вращения руля, уменьшающий шарнирный момент Mш = Th. Это приводит к уменьшению потребных усилий Tв системе управления и, в конечном счете, к уменьшению усилий на командных рычагах управления. Эти усилия могут быть снижены вплоть до нуля при Мт=Уэла (см. рис. 3, а).
Конструкция триммера показана на рис. 4.14, б. Она типична для рулевой поверхности, в том числе и для сервокомпенсатора, и состоит из каркаса и обшивки. Каркас — из лонжеронов 3, нервюр 2, диафрагм 4, узлов навески 6, кронштейна с проушиной 8 для тяги управления 7. Для легких маневренных самолетов конструкция триммера может быть выполнена из магниевого литья в виде двух склепанных половин, разрезанных по хорде. Внутри для облегчения удален ненужный (по условиям обеспечения прочности) материал. Управление обычно электромеханическое из кабины пилота, сам электромеханизм управления (ЭМУ) можно располагать в носке руля, уменьшая тем самым затраты массы на весовую балансировку руля.
Рис. 3. Триммер. Конструкция триммера и узлов его навески и управления. Конструкция сервокомпенсаторов
6. Нагружается элерон (руль), как и другие подвижные части крыла (оперения), аэродинамическими силами и реакциями опор. Расчетная нагрузка элерона (руля)
пропорциональна его площади S, и скоростному напору q. По размаху элерона (руля) эта нагрузка распределяется пропорционально хордам, по хорде — по закону трапеции.Для элерона , а распределенная нагрузка
. Здесь К — коэффициент, задаваемый нормами прочности; / — коэффициент безопасности. На рис. 4.15, а показаны реакции в опорах: — от воздушной нагрузки и — от сил в тягах привода управления. Определить эти реакции для многоопорной балки — элерона можно, используя метод сил или уравнение трех моментовНа рис. 4, а показана схема сил, а на рис. 5, б — эпюры Q, Mи Мк для секций элерона, конструкция которого рассматривалась выше (см. рис. 4.12). Из сказанного следует, что элерон как многопролетная балка от воздушной нагрузки и реакций на опорах Rqiработает на изгиб в плоскости, перпендикулярной плоскости хорд элерона, а в плоскости хорд — от реакций Rтi. Ha кручение элерон работает как балка, защемленная в плоскости тяг приводов управления. Скачки в эпюре Мк, равные Rixi, вызваны несовпадением оси жесткости (ОЖ) с осью вращения. Такой характер нагружения и работы элерона типичен для многоопорных конструкций элеронов.
Имея эпюры Q, Mи Мк, можно подобрать сечения силовых элементов элерона. Расположение на близком расстоянии узлов навески 3 (см. рис. 4.12) с тягами приводов управления и сосредоточенного выносного груза позволяет рациональнее использовать материал в этой зоне, требующей большой жесткости на кручение. Силы Rqiи Rтiбудут нагружать усиленные нервюры крыла и раздаваться ими на стенки лонжеронов и обшивку.
Рис. 4. Нагрузки на элерон и эпюры Q, M и Мк
Литература :
1. Конструкция самолетов, Г.И.Житомирский – Москва «Машиностроение» 1991 г. – с.144.
2. Конструкция самолетов, О.А.Гребеньков – Москва «Машиностроение» 1984 г. – с.87.