оценивается величиной и скоростью его приращения при достаточно малом изменении структурного параметра механизма. Указанные качества диагностических признаков, а следовательно, и достоверность диагностики в большой степени зависят от теплового нагрузочного и скоростного режимов работы диагностируемого механизма. Поэтому при диагностике часто используют устройства, задающие и поддерживающие оптимальные режимы.
4. Процесс диагностирования двигателей.
Процесс диагностирования заключается в восприятии диагностических параметров (S1, S2, …, Sп), измерении их величин, определяющих в известном масштабе параметры технического состояния (X1,X2, …, Xn) механизма, и выдачи заключения на основе сопоставления измеренных величин с упреждающими (Sу1, Sу2, …., Sуn) или предельными (Sп1, Sп2, …, Sпn) величинами.
Процесс восприятия и измерения диагностических параметров показан на рис. 1. Объект диагностики О имеет техническое состояние, характеризующееся параметром Х. Функционируя, или под воздействием стимулирующего устройства (например, стенда), он порождает соответствующий диагностический параметр S. Этот параметр воспринимается при помощи какого-либо одного или нескольких датчиков D (механических, тепловых, электрических,
S
Рис. 1. Схема процесса диагностики.
индукционных и др.). От датчика параметр в трансформированном виде S′ поступает в устройство У для соответствующей обработки (расчленения усиления, дешифровки, анализа и т.п.) и далее в измерительное устройство И, где измеряется параметр X технического состояния в определённом масштабе α при помощи прибора (стрелочного типа, индикатора, диаграммы, компостера и т.п.).
Простые механизмы диагностируют по одному наиболее весомому признаку, а сложные по нескольким. Диагностика сложных механизмов возможна либо по одному признаку путём анализа полученной информации, либо одновременно по нескольким диагностическим параметрам путём синтеза сведений о состоянии объекта. В последнем случае заключение о техническом состоянии делают на основе логической обработки полученных результатов.
При логической обработке учитывается, что каждый из структурных параметров, достигнув упреждающей или предельной величины (т.е. превратившись в неисправность), может породить одновременно несколько различных диагностических параметров соответствующей величины. При этом различные неисправности могут частично сопровождаться одинаковыми диагностическими параметрами. Так, например, износ запорной иглы поплавковой камеры карбюратора может вызвать расход топлива, превышающий норму, перегрев двигателя, рост содержания СО в отработавших газах и т.д. Такие же и некоторые другие диагностические параметры сопровождают износ дозирующих устройств. При этом неисправности могут быть такими, что механизм не перестаёт функционировать. В этом случае для локализации неисправности сложного устройства необходимо пользоваться целым комплексом диагностических параметров. Для решения подобных задач надо знать количественные характеристики типичных неисправностей (т.е. величины структурных параметров, при достижении которых требуется профилактика или ремонт) и порождаемых ими диагностических параметров, достигших упреждающих или предельных величин, а также связей между теми и другими.
Рассмотрим схематический пример методики выявления одной из возможных неисправностей механизма, при наличии которой он требует профилактики. Пусть известно, что механизм может иметь три типичных неисправности Xy1, Xy2, Xy3 и три порождаемых ими диагностических параметра Sy1, Sy2, Sy3. Взаимосвязь между неисправностями и параметрами можно выразить таблицей (рис. 2), называемой диагностической матрицей. Единицы, проставленные в клетках горизонтального ряда этой матрицы, указывают на существование неисправности механизма при наличии данного диагностического параметра S ≥ Sy, а нули - на отсутствие неисправности. Подобные диагностические матрицы составляют на основе изучения структурных связей между элементами механизма, параметрами его состояния и диагностическими параметрами. В рассматриваемом примере существование первого
диагностического параметра,
Пара- метрыSy1 Sy2 Sy3 | Неисправности Xy1Xy2Xy31 1 01010 1 1 |
имеющего величину Sy1, оз-
начает возможность первой
Xy1 или второй Xy2 неисправ-
ности; существование второ-
го Sy2 - соответственно пер-
вой Xy1 и третьей Xy3, а су-
ществование третьего Sy3 -
второй Xy2 и третьей Xy3 не-
исправностей. Анализируя
эту элементарно простую Рис. 2. Принципиальная схема диагности-
таблицу, нетрудно заметить, ческой матрицы.
что наличие у механизма
первой неисправности сопровождается первым и вторым диагностическим параметром, наличие второй - первым и третьим, наличие третьей - вторым и третьим. Из этого следует, что при возникновении параметров Sy1 и Sy2 механизм имеет неисправность Xy1, при наличии Sy1 и Sy3 - неисправность Xy2 а при наличии Sy2 и Sy3 - неисправность Xy3.
Реальные задачи этого вида значительно сложнее из-за большого числа неисправностей и признаков и вследствие множественных связей между теми и другими. В этих случаях целесообразно применение логических автоматов с датчиками, воспринимающими диагностические признаки, и пороговыми устройствами для включения соответствующих цепей автомата при достижении диагностическими параметрами нормативных величин. При этом в автомат последовательно поступают дозы информации, снижающие неопределённость состояния (энтропию) диагностируемого объекта, и происходит выявление неисправности, которая может существовать при данной комбинации диагностических параметров. В итоге срабатывает индикатор, фиксирующий искомую неисправность.
5. Методы диагностики.
Методы диагностики двигателей базируются на способах измерения параметров, наиболее приемлемых для данного механизма диагностических признаков. Для выбора таких параметров используют структурно-следственную схему диагностируемого механизма. Эта схема связывает элементы механизма с его структурными параметрами, а структурные параметры с соответствующими им диагностическими признаками и диагностическими параметрами. На рис. 3 показана такая схема применительно к узлу: поршень, кольцо, цилиндр.
На основе анализа структурной схемы выбирают наиболее эффективный метод измерения параметров диагностических признаков, т.е. метод диагностики. На рис. 4 показаны основные группы методов диагностики двигателей.
Метод диагностики по параметрам эффективности, т.е. по параметрам рабочих процессов, широко используется для комплексной оценки работоспособности двигателя. Он заключается в имитации условий и режимов работы двигателя. Применительно к двигателю это может быть измерение мощностных и экономических показателей.
Диагностика по герметичности рабочих объёмов используется для оценки технического состояния цилиндро-поршневой группы двигателя, его систем охлаждения и смазки.
Метод тепловой диагностики по скорости и температуре нагрева применяют главным образом для оценки состояния сопряжений по выделению ими тепла соответственно работе трения при заданном скоростном и нагрузочном режимах.
По геометрическим соотношениям (зазорам, смещениям) диагностируют подшипники и шкворни.
Метод диагностики по колебательным процессам (шумам, вибрациям) широко применяют для общей оценки технического состояния двигателя (по уровню шума) и для локальной проверки кривошипно-шатунного и газораспределительного механизмов.