Чрезмерное повышение температуры оплавления сплава и времени выдержки при температуре оплавления приводит к огрублению структуры, снижению механических свойств основы и покрытия.
Детали при наплавке быстро нагреваются до высоких температур; изменяются тепловые условия формирования покрытий, увеличиваются глубина проплавления и степень перемешивания материалов покрытия и основы, наплавочный материал в покрытии теряет свои исходные свойства. Необходимость управления тепловыми условиями плазменно-порошковой наплавки, выбора оптимальных режимов диктует необходимость построения физико-математической модели с последующим использованием ее в компьютерном проектировании и управления процессом нанесения покрытий. Благодаря возможности регулирования в широком диапазоне соотношения между тепловой мощностью дуги и подачей присадочного порошка, плазменная порошковая наплавка обеспечивает достаточно высокую производительность при минимальном проплавлении основного металла, что позволяет обеспечивать требуемую твердость и заданный химический состав наплавленного металла уже на расстоянии 0,3-0,5 мм от поверхности сплавления. Это дает возможность ограничиться однослойной наплавкой там, где электродуговым способом необходимо наплавить 3-4 слоя.
Основными преимуществами этого метода являются:
· гибкость регулирования тепловложения как в основной металл, так и в наплавляемый материал;
· минимальная зона термического влияния; высокая плотность и прочность наплавленного металла;
· снижение деформаций изделий; высокая производительность;
· удобство нанесения покрытий
4. Способ защиты - лазерное легирование
Для осуществления процесса лазерного легирования необходимо, чтобы температура металла на поверхности достигала значений, немного превышающих температуру его плавления. В процессе плавления материала основы происходит интенсивное перемешивание его с легирующими элементами, размещенными на обрабатываемой поверхности. Глубина легирования определяется мощностью луча лазера, его диаметром и скоростью сканирования. Глубина легирования в зависимости от режимов обработки насыщенного и легирующего материалов может достигать, например при насыщении углеродистой стали кобальтом, 1, 2 мм. Лазерное легирование позволяет значительно повысить износостойкость, коррозионную стойкость и противоударную прочность клапанов. Большое распространение в двигателестроении получила наплавка. Для наплавки фасок клапанов применяются различные методы и материалы на кобальтовой и никелевой основе, например стеллиты (4.5 % W, 30 % Сг, 60 % Со, остальное С, Fe, и Si). Толщина наплавленных твердых сложных сплавов типа стеллитов, например вольфрамохромокобальтового сплава ВЗК или нихрома Х20Н80, составляет 1-1,5 мм- Сплав наносится на поверхность нагретой заготовки. Стеллитовые покрытия превышают твердость поверхности в большей степени, чем закалка или азотирование. Сплавы ВЗК и Х20Н80 обладают хорошей жаростойкостью до 1000-1100° С. Твердость ВЗК около HRC 70. Нихром имеет меньшую твердость, но благодаря большой пластичности лучше прирабатывается к седлу; плотное прилегание обеспечивается даже при короблении седел.
5. Способ защиты – наплавка токами высокой частоты
В отечественном двигателестроении применяют также наплавку с использованием токов высокой частоты. Сущность процесса наплавки токами высокой частоты заключается в следующем: на заготовку клапана, в выточку, укладывается кольцо из жаропрочного сплава, зона наплавки защищается от окисления порошковым флюсом или газовой защитой (аргон, азот).
Специальный индуктор нагревает кольцо токами высокой частоты до расплавления и подогревает заготовку клапана до температуры, обеспечивающей диффузионное соединение.
Для кристаллизации расплавленного сплава на торец клапана снизу подается вода, в результате происходит «намораживание», т. е. направленная кристаллизация сплава. Равномерность нагрева обеспечивается вращением клапана. Для наплавки клапанов ТВЧ разработаны специальные самофлюсующиеся сплавы на никель-хром-бористой основе, такие как НХ16С2Р2 (ЭП616), НХ26С2Р2 (ЭП616А), НХ24С2Р2Б (ЭП616Б), и НХ10С2Р2 (ЭП616В), которые в четыре раза дешевле кобальтовых стеллитов, имеют высокую стойкость против коррозии и достаточную горячую твердость. На рабочей наплавленной поверхности клапана не должно быть трещин, раковин и неметаллических включений. На клапанах с диаметром тарелки более 70 мм допускаются отдельные участки междендритной усадочной пористости, количество и размеры которых установлены технической документацией на конкретные клапаны. Участки пористости не должны выходить на края притираемой поверхности. Отсутствие трещин, закатов, раскованных и раскатанных пузырьков проверяют методами магнитной дефектоскопии, а для немагнитных материалов - капиллярным методом. Зарубежные фирмы на промежуточную наплавку, в основном выполненную из сплава на кобальтовой основе (стеллит-6 твердостью HRC 39-49 и др.), наплавляют еще слой твердого коррозионно-стойкого сплава на никелевой основе (70 % Ni и более) с высокой твердостью (HRC 48-62). Для увеличения стойкости клапанов торец стержня клапана также наплавляют износостойким материалом, а поверхности стержня подвергают азотированию или хромированию.
Сравнительная характеристика методов восстановления клапанов.
В таблице 1 представлены характеристики основных методов, используемых для упрочнения и ремонта клапанов двигателей внутреннего сгорания.
Таблица 1
Название метода | Растворимость основного металла | Сцепление с основой | Степень автоматизации |
Наплавка ТВЧ | 20 - 30% | отличное | полуавтомат |
Лазерное легирование | 5 - 10% | отличное | полуавтомат |
Плазменная наплавка | 2 - 5% | отличное | полная |
Следовательно в ремонтных работах следует использовать – наплавку ТВЧ, в мелкосерийном производстве и ремонте - лазерное легирование, в серийном и крупносерийном- плазменно-порошковую наплавку.