Выполнила: Мысливченко А.Н.
Проверила: Марченко С.В.
Рисунок 1 - Общий вид двигателя
Рабочий цикл четырехтактного карбюраторного двигателя.
Четырехтактный двигатель внутреннего сгорания работает по следующему принципу;
Рисунок 2 - Впуск горючей смеси
Впуск - поршень перемещается от верхней мертвой точки к нижней мертвой точке. Открыто впускное отверстие. Вследствие увеличения объема внутри цилиндра создается разрежение 0,075 - 0,085 МПа, а температура смеси находится в пределах 90 -125° С. Цилиндр заполняется свежим зарядом горючей смеси.
Сжатие - поршень движется от н.м.т. кв. м.т. Впускное и выпускное отверстия закрыты. Объем над поршнем уменьшается, а давление и температура к концу такта соответственно достигают величин 1,0...1,2 МПа и 350. 450° С. Рабочая смесь сжимается, благодаря чему улучшается испарение и перемешивание паров бензина с воздухом.
Рабочий ход (сгорание и расширение) - сжатая рабочая смесь воспламеняется искрой. Поршень под давлением расширяющихся газов перемещается от в. м. т. к н.м.т. Впускное и выпускное отверстия закрыты. Давление газов достигает величины 3,5...4,0 МПа, а температура доходит до 2000° С.
Рисунок 3 - Рабочий ход поршня
Выпуск - поршень движется от н.м.т. кв. м.т. Открыто выпускной клапан. Давление газов снижается до 0,11...0,12 МПа, а температура-до 300...400° С.
Рисунок 4 - Выпуск газов при помощью опускания выпускного клапана (вид А)
2. Условия работы выпускного клапана
Клапаны двигателя внутреннего сгорания функционируют в экстремальных условиях. Они подвержены совместному действию переменной механической нагрузки, высокой температуры, износа, коррозии и эрозии. Во время работы двигателя температура нагрева головки клапана может достигать 800˚С, стержень нагружен циклическими растягивающими усилиями пружины, поверхность стержня подвергается сильному воздействию факторов трения, торец стержня испытывает интенсивные контактные нагрузки. Клапаны и седла клапанов подвергаются износу в результате ударов головки клапана о седло, повторяющихся с большой частотой, коррозионному действию агрессивных отработавших газов при повышенной температуре, а также эрозионному действию струи газа и продуктов неполного сгорания топлива. После некоторого периода, работы седло покрывается нагаром, который под влиянием высокой температуры накаляется, что приводит к выжиганию опорной поверхности клапана и потере герметичности. Не герметичность клапанов, в свою очередь, приводит к нарушениям в работе двигателя, к которым относятся затрудненный запуск, уменьшение мощности и др. При этом через образовавшиеся щели под высоким давлением проходит струя горячих рабочих газов, сильно нагревающих головку клапана. Вследствие такого нагрева края головки подправляются и клапан разрушается. С течением времени материал клапана может настолько снизить свою прочность в результате выгорания некоторых компонентов сплава, что возможен даже отрыв головки от стержня клапана. На интенсивность износа седел клапанов влияет также состав всасываемой в цилиндры смеси. Вели смесь слишком бедную, то сгорание происходит при более высокой температуре и коррозионное действие отработавших газов оказывается сильнее. Когда смесь слишком богата, сгорание идет медленнее и при более низкой температуре. Несгоревшие тяжелые фракции топлива ускоряют осаждение слоя нагара, коррозионно-агрессивного к материалу клапана. Поэтому к клапанам предъявляются очень жесткие технические и качественные требования.
Возможные причины выхода из строя или дефектов при эксплуатации выпускных клапанов.
Характерными дефектами выпускных клапанов являются их прогорание и зависание, обрыв клапанных тарелок (термическое разрушение донышка). На выпускные клапаны приходится до 12% общего числа отказов по дизелю. Основная доля отказов (около 60 %) связана с разрушением рабочих поисков клапанов и их седел из-за образования глубоких раковин, требующих проточки и притирки. Наблюдается также изнашивание стержня по длине и направляющих втулок. ( Следует отметить, что выпускные клапаны и седла изнашиваются гораздо быстрее впускных, так как их коррозия развивается интенсивнее.)
Наибольший урон выпускным клапанам наноситгазовая коррозия. Газовая коррозия - коррозия металлов, вызываемая действием паров и газов обычно при высоких температурах Металлы окисляются кислородом, парами воды, оксидом углерода, оксидом серы по следующих уравнениях;
2Ме + О2 + t→ 2MeO
Me + C О2 + t→ MeO + CO
Me + H2O + t→ MeO + H2
3 Me +SО2 + t→ 2MeO + MeS
Материалы используемые для производства выпускных клапанов.
Для клапанов используется всегда жаростойкая (чаще всего хромистая) сталь, содержащая 8-15% Сг, 2-3% Si, 0,45% С. Например: 4Х10С2М(ЭИ107) Клапаны двигателей, крепежные детали, работающие при 600-650°С. 3Х13Н7С2 (ЭИ72,)- Клапаны впуска авиадвигателей и выпуска автомобильных, тракторных двигателей.
5Х20Н4АГ9 (ЭП3О3) Клапаны выпуска автомобильных двигателей. В авиационных поршневых двигателях, как в отечественной, так и зарубежной практике для выпускных клапанов используют хромоникельвольфрамомолибденовую сталь марки 4Х14Н14В2М (ЭИ69).
Прогрессивные технологические решения для увеличения срока службы выпускных клапанов.
3. Способ защиты - плазменно-порошковая наплавка
Из существующих способов плазменно-порошковая наплавка получила наибольшее распространение как наиболее универсальный метод. При плазменно-порошковой наплавке присадкой служат гранулированные металлические порошки, которые подаются в плазмотрон транспортирующим газом с помощью специального питателя. Метод порошковой плазменной наплавки (ППН) является наиболее оптимальным по производительности, цене и качеству.
Достоинства метода плазменной наплавки заключаются в следующем:
· высокая производительность наплавки - выше 25 кг/ч;
· эффективность метода - около 85 %;
· низкая растворимость основного металла в наплавленном слое (до 5%);
· высокое качество наплавленного металла;
· возможность наплавки относительно тонких слоев (0,5-5,0 мм).
Важной особенностью ППН является отличное формирование наплавленных валиков, стабильность и хорошая воспроизводимость их размеров. Установлено, что у 95% наплавленных деталей отклонение толщины наплавленного слоя от номинального размера не превышает 0,5 мм. Это позволяет существенно сократить расход наплавочных материалов, время наплавки, а также затраты на механическую обработку наплавленных деталей.
Установление взаимосвязи между температурой оплавления порошка и временем выдержки при температуре оплавления порошка позволяет регулировать и управлять свойствами покрытия. Оптимальный выбор технологических режимов процесса плазменной наплавки обеспечивает минимальное перемешивание наплавляемого материала с основным металлом, практически, с нулевой глубиной проплавления (что позволяет при однослойной наплавке обеспечить заданный состав даже тонкого слоя покрытия), а также минимальную окисляемость наплавляемого материала за счёт специальной инертной или восстановительной защитной среды.
Плазменная порошковая наплавка обеспечивает высокую работоспособность деталей за счет отличного качества наплавленного металла, его однородности, а также благоприятной структуры, определяемой специфическими условиями кристаллизации металла сварочной ванны.
Производительность плазменной наплавки с введением порошкообразного материала в столб дуги транспортирующим газом можно повышать либо за счет увеличения тепловой мощности дуги, либо за счет более эффективного нагрева порошка в дуге. Особенности процессов плавления присадочного и основного металлов при плазменной наплавке обусловлены возможностью регулировать в широком диапазоне соотношение между тепловой мощностью дуги, количеством и температурой подаваемого в сварочную ванну присадочного порошка. Изменяя это соотношение, можно обеспечить минимальное проплавление основного металла.
В качестве материала выбираются композиционные порошки на основе железа (в том числе и нержавеющие стали), кобальта, никеля (в том числе и самофлюсующиеся), обладающие свойствами обеспечивающими коррозионную, ударную, тепловую стойкости и устойчивость к износу.
Для автоматизации процесса применяются роботизированные комплексы, обеспечивающие непрерывность процесса изготовления упрочненных клапанов.