Смекни!
smekni.com

Контроль и регулирование движения судна (стр. 3 из 4)

МР = МТВ + МДВ

Аналогично наибольшие расчетные перерезывающие силы как для прогиба, так и для перегиба определяют алгебраическим суммирова­нием наибольших значений перерезывающих сил, возникающих на тихой воде FTB, с дополнительной волновой перерезывающей силой FДВ:

FР = FТВ + FДВ.

Способность корпуса выдерживать нагрузки, действующие на отдельные его перекрытия и связи, определяет местную прочность. Среди местных нагрузок выделяют гидростатическое давление при аварийных затоплениях отсеков, сосредоточенные и распределенные силы при приеме и снятии грузов в районе грузоподъемных устройств, реакции кильблоков при постановке в док, сосредоточенные силы при швартовке и буксировке, силы обжатия корпуса льдом при ледовой проводке судна.

Давление воды на поперечное сечение корпуса определя­ют с учетом движения судна на волнении, т. е. нагрузки на днище qД и на борта qб вычисляют по осадке уровня волновой ватерлинии. Прочность палубных перекрытий должна обеспечивать восприятие поперечной равномерно распределенной нагрузки qн.

Правилами постройки ледоколов и транспортных судов для пла­вания в ледовых условиях предусматривается комплекс конструктив­ных мероприятий по подкреплению корпуса, обеспечивающих безопас­ность плавания во льдах.

Днищевые перекрытия речных судов проверяют также на восприятие реакции платформ и кильбло­ков косяковых тележек при подъе­ме судов на слипы.

Ре­гистром Украины утверждается инструкция по погрузке, выгрузке и балластировке для судов каждого типа. Отклонение от инструкции может привести к нарушению прочности, поэтому выполнение ее должно строго соблюдаться командным составом судна.

Прогиб (перегиб) судна можно уменьшить или устранить перемещением груза или запасов ближе к оконечностям (мидель-шпангоуту).

Использование моделирующих приборов для контроля загрузки с учетом необходимой посадки, остойчивости и прочности позволяет быстро и достаточно точно проверить несколь­ко вариантов загрузки и выбрать приемлемый, а иногда и оптимальный вариант.

С ростом скорости, и размеров судов при плавании на волнении участились случаи слеминга, приводящего к повреждению днища и бортов судна. В наиболее тяжелых случаях по­вреждения охватывают до 30% длины судна в носу, а прогибы достигают 300 мм. что приво­дит к разрыву связей и обшивки корпуса, за­топлению носовых трюмов.

Условия появления слеминга: волнение с встречных курсовых углов;

близость кажущего­ся периода волнения собственному периоду килевой качки; кажущаяся крутизна волны не менее 1/50; скорость вертикальных колебаний корпуса не менее 3,5 м/с. Днищевой слемннг появляется при осадке носом менее 0,04 - 0,05 длины судна.

Для судоводителя важно объективно оце­нить интенсивность удара вря слемииге для решения вопроса о поддержании скорости без опасения повредить корпус.

Регулирование и контроль за обеспечени­ем местной прочности палубных перекрытий, платформ, двойного дна, люковых закрытий осуществляется: путем назначения для каждого перекрытия допускаемых удельных нагрузок. Величины этих нагрузок указаны на чертежах палуб судовой документации и обычно лежат в пределах 1,0—10 тс/м2.

Ходкость—способность судна развивать с помощью движителей за­данную скорость, преодолевая сопротивление окружающей среды — воды и воздуха. Сила сопротивления движению судна зависит от физических свойств среды. Важнейшими физическими характеристика­ми жидкости являются плотность и вязкость.

Плотностью называется величина, определяемая отношением мас­сы вещества к занимаемому им объему, т/м3

r = m/V1

где т — масса жидкости, т;

V1 — объем, м8.

Вязкость (внутреннее трение) — свойство жидкостей оказывать со­противление перемещению одной их части относительно другой. При течении вязкой жидкости в трубе ее скорость возрастает от нулевого значения у стенки трубы до максимального значения на оси. Между слоями, движущимися с разными скоростями, действуют касатель­ные силы внутреннего трения: слой, перемещающийся быстрее, увле­кает за собой слой, движущийся медленнее, а тот в свою очередь тор­мозит первый. Вязкость жидкостей увеличивается с понижением тем­пературы; она характеризуется коэффициентами динамической h и кинематической v вязкости.

Вязкость жидкости, а также шероховатость поверхности вызывают изменение скорости обтекания вблизи поверхности корпуса. Благодаря молекулярным силам сцепления частицы воды, непосредственно сопри­касающиеся с обшивкой корпуса, как бы прилипают к ней и движутся со скоростью, равной скорости судна. По мере удаления от поверхно­сти корпуса скорость частиц в слое воды уменьшается. На некотором удалении частицы имеют скорость невозмущенного потока. Зона, в ко­торой наблюдается изменение скоростей движения частиц жидкости, называется пограничным слоем.

Относительное смещение слоев воды в пограничном слое и измене­ние при этом гидродинамического давления вдоль смоченной поверх­ности корпуса вызывают сопротивление движению судна.

Полное сопротивление движению судна складывается из пяти основ­ных составляющих:

R = RT + RФ + RB + RBЧ + Rвозд

Сопротивление трения RT — равнодействующая сил трения, возни­кающих вследствие вязкости воды между корпусом движущегося суд­на и ближайшими к нему слоями воды пограничного слоя. Сопротив­ление трения зависит от скорости судна, размеров и формы смоченной поверхности корпуса и степени ее шероховатости:

RT = xT (r/2) v2 W

где xT — безразмерный коэффициент сопротивления трения;

v — скорость судна, м/с;

W — площадь смоченной поверхности корпуса, м2.

Площадь смоченной поверхности определяют по теоретическому

чертежу или эмпирической формуле:

W = L(1,36T + 1,13dВ),

где L, В, Т — главные размерения судна, м;

d — коэффициент полноты во­доизмещения корпуса.

Снижение сопротивления трения на практике достигают устране­нием шероховатости наружной обшивки, периодическими очисткой и окраской подводной части корпуса стойкими и самополирующимися красками мелкой зернистости, планомерной борьбой с обрастанием корпуса водорослями и ракушками у судов смешанного плавания.

Сопротивление формы RФ образуется при понижении давления во­ды за кормой судна и появлении добавочных сил, препятствующих его движению. Равнодействующая сил, возникающих вследствие разности гидродинамических давлений вдоль корпуса и зависящих от его фор­мы, называется сопротивлением формы:

RФ = xФ(r/2) v2 W

где xФ — безразмерный коэффициент сопротивления формы.

Сопротивление формы может быть уменьшено при проектировании корпуса судна путем улучшения его обтекаемости, увеличения отноше­ния L/B и обеспечения примыкания кормовых ветвей ватерлинии к ДП в подводной части корпуса под возможно меньшими углами.

Волновое сопротивление RB обусловлено влиянием волн на распре­деление гидродинамических давлений вдоль смоченной поверхности судна:

RВ = xВ(r/2) v2 W

где xВ — безразмерный коэффициент волнового сопротивления (находят по специальным графикам, составленным по результатам модельных испытаний судна).

Для уменьшения волнового сопротивления задаются возможно большими значениями отношения L/B и коэффициента продольной пол­ноты. При прочих равных условиях достигается значительное умень­шение волнового сопротивления у катамаранов. С целью снижения волнового сопротивления корпуса морских судов изготовляют с носо­выми бульбами.

Сопротивление формы и волно­вое сопротивление образуют оста­точное сопротивление, определяе­мое по модельным испытаниям судна в опытовом бассейне:

RO = RФ + RB

Сопротивление выступающих частей RBЧ образуется сопротивлением рулей, насадок, кронштейнов гребного вала и других выступающих частей корпуса. Конструкторы стремятся уменьшить сопротивление выступающих частей, придавая им хорошо обтекаемую форму и сокра­щая их число.

Сопротивление воздуха RВ03Д характеризует воздействие на судно воздушной среды. При проектировании судна для уменьшения сопро­тивления воздуха надстройкам придают обтекаемую форму и макси­мально уменьшают их размеры.

Двигатели, с помощью которых судно приво­дится в движение, называются главными. Главные двигатели вме­сте с оборудованием, необходимым для их работы, составляют главную энергетическую установку судна.

На морских судах в качестве главных двигателей устанавли­вают двигатели внутреннего сгорания (дизели), реже — паровые и газовые турбины. На судах старой постройки сохранились паро­вые машины. Все перечисленные двигатели являются тепловыми, т. е. вырабатывают механическую энергию из тепловой. Теплота выделяется при сгорании нефтяного топлива или, в атомных уста­новках, при делении атомных ядер.

Тепловые двигатели различают по роду рабочего тела, при рас­ширении которого теплота превращается в работу. В двигателях внутреннего сгорания и газовых турбинах рабочим телом служит смесь газов, получаемая при сгорании топлива. В паровых маши­нах и турбинах рабочим телом служит водяной пар.