Смекни!
smekni.com

Мостовой кран (стр. 3 из 4)

Определяем эквивалентный момент на тихоходном валу редуктора Тр.э..

Для режима работы 3М, класс нагружения В1 и класс использования А4.

К = 0,25; КQ= 0,63; tмаш = 12500 ч.

Частота вращения тихоходного вала редуктора равна 10,31 об/мин.

Число циклов нагружения на тихоходном валу редуктора по формуле:

ZT = 30*nT*tмаш = 30*10,31*12500 = 3,86 * 106

Передаточное число тихоходной ступени uT = 5.

Суммарное число циклов контактных напряжений зуба шестерни тихоходной ступени.

Zp = ZT * uT = 3,86*106*5 = 19,3*106

Базовое число циклов контактных напряжений Z0 = 125*106

Коэффициент срока службы.

Кt = 3√(Zp/Z0) = 3√(19,3*106)/(125*106) = 0,536

Kд = КQ*Кt = 0,63*0,536 = 0,337

Принимаю Kд = 0,63

Определяем расчетный крутящий момент Тр на тихоходном валу редуктора.

Ориентировочно ВКУ – 965М.

up = 80.

(84,81 – 80)/84,81 = 5,67 % - значеня передаточных чисел расходятся на допустимую величину.

КПД редуктора по данным завода изготовителя.

ηр = 0,94

ωдв = π*nдв/30 = 3,14*895/30 = 93,67 рад/с.

Тдв н = Nдв/ ωдв = 20,5*103/93,67 = 218,85 Нм

Примем Ψп макс = 2

Тдв макс = Тдв н * Ψп макс = 437,7 Нм

Примем Тдв макс = 440 Нм

Тр = Тдв макс * Up* ηр = 440*80*0,94 = 33088 Нм

Расчетный эквивалентный момент

Тр э = Тр* Kд = 0,63*33088 = 20845,44 Нм.

Редуктор ВКУ – 610М имеет Тн = 19750 – 27200 Нм, следовательно нам подходит. Схема сборки редуктора 13 или 23 – в зависимости от того, где он расположен. Условное обозначение ВКУ – 965М – 65 – 23 – 42 ТУ 24.013673 - 79

awc = 965 мм; dв быстр = 65 мм; dв тих = 125 мм; mp = 1500 кг.

Определение фактической скорости и КПД механизма

Vпредв тел = ωдв*rш/uмех = 93,67*0,315/80 = 0,368 м/с

Отличие от заданной скорости 4 % - что допустимо.

КПД одной зубчатой муфты ηм = 0,99

ηмех = 0,99*0,94*0,99 = 0,92

Выбор муфт

Для быстроходного вала – зубчатая муфта 2-4000-40-2-65-2-2У2 ГОСТ 5006 – 83.

dдв = 40 мм; dред быстр = 65 мм.

Для тихоходного вала – зубчатая муфта 2 - 25000 -125-1-125-1-2У2 ГОСТ 5006 –83

Параметры муфты на быстроходном валу:

Тм н = 4000 Нм; Jм = 0,06 кгм2; dлев =40 мм, dправ = 65 мм; mм = 15,2 кг.

Параметры муфты на тихоходном валу:

Тм н = 25000 Нм; Jм = 2,25 кгм2; dлев = dправ = 125 мм; mм = 100 кг.

Выбор тормоза

Wу о = α*Gт = 0,002*420 = 0,82 kH

Wтр о = GT*(2*μ+ƒ*dц)*Ктрол /D = 420*(2*1+0,015*130)*1/710 = 1,15 кН

Wин.0 = d*mт*a = 1,25*42*0,05 = 2,625

Крутящие моменты, приведенные к первому валу механизма:

Ту о = Wу о *rk*ηк-т/uмех = 0,82*103*0,4*0,92/80 = 3,772 Нм

Ттр о = Wтр о*rk/(Uмех* ηк-т) = 1,15*103*0,4/(80*0,92) = 6,25 Нм

Тин.0 = Wин.0* rk*ηк-т / uмех = 2,625*103*0,4*0,92/80 = 12,075 Нм

Расчетный тормозной момент механизма:

Тт р мех = Кзап*(Ту о + Тин.0 – Ттр о)

Кзап = 1,2 – коэффициент запаса торможения согласно правилам ГГТН.

Тт р мех = 1,2*( 3,772+12,075-6,25 ) = 11,51 Нм

Расчетный тормозной момент

Тт р = Тт р мех т.к. тормоз в механизме один.

Выбираем тормоз типа ТКГ, так как электрогидравлический толкатель, являющийся приводом тормоза, служит одновременно своеобразным демпфером, снижая динамику замыкания тормоза. Это благоприятно скажется на сцеплении колес тележки с рельсами при торможении.

Выбираю типоразмер тормоза – тормоз ТКГ – 200 ОСТ 24.290.08-82.

Тт н = 245 Нм; Dт м = 200 мм; mтор = 50 кг; Вк = 90 мм; Ршт = 390 Н; Lуст = 613 мм; hшт макс = 32 мм. Тип толкателя – ТГМ25.

Для рассчета балки моста нам понадобится определить нагрузки на колеса тележки Pст.max = ( Gгр + Gт ) 1,1 / 8 = 286 кН.

Pст.min= Gт 0,9 / 8 = 54 кН.

9 Кабина управления

В данном кране применяется неподвижная кабина. Кабина подвешена непосредственно к мосту. Корпус кабины имеет звукопоглощающую обшивку и покрытие. Для снижения уровня вибраций применяется демпфирующая подвеска кабины. Лестница, находящаяся на кронштейне крепления кабины к мосту, обеспечивает безопасный выход при остановке в любом месте моста.

Рабочее место крановщика оборудовано креслом, позволяющим работать в удобной позе и отдыхать в перерыве между операциями. Кабина должна находится вне главных троллейных проводов. Кабина с наружной стороны окрашена в виде чередующихся полос черного и желтого цвета ( согласно ГОСТ 12.4.026 – 76 ), расположенных под углом 450. Места контактов органов управления с руками и ногами работающего выполняют из нетоксичных материалов.

Система токоподвода

Для подвода тока к грузовой тележке используется система со шторной подвеской кабеля, достаточно надежная в работе и обладающая относительно небольшой массой.

Для обеспечения эксплуатационной надежности системы токоподвода кабель поддерживается каретками, снабженными роликами.

10 Расчет металлической конструкции моста

Материал балки.

Опыт эксплуатации показал, что достаточная надежность обеспечивается при применение стали Ст3псп3 и Ст3сп по ГОСТ 380-71 (для металлических конструкций ).

Для изготовления несущих элементов металлических конструкций используют листовую, профильную и фасонную сталь, а также холодногнутые профили.

При назначение сортамента металла для конструкций с плоскими стенками толщину листов рекомендуется принимать не менее 4 мм.

Защита от коррозии

У конструкции коробчатого сечения скорость коррозионно-механического изнашивания в 1,5-2 раза ниже, чем у прокатных или гнутых профилей. Чтобы не задерживать влагу, все карманы должны иметь дно с уклоном не менее 1/20; диаметр дренажных отверстий должен быть не менее 20 мм.

Двухбалочный мост.

Т.к. кран предназначен для длительного использования на одном объекте без перебазирования, можно использовать листовые конструкции.

Применим коробчатое сечение, т к коробчатая конструкция обладает меньшей трудоемкостью изготовления, высокой усталостной прочность и меньшей общей высотой моста.

11 Металлическая конструкция моста

Мост выполнен сварным, в качестве материала принята углеродистая сталь марки Ст3псп3. Необходимую высоту балки в среднем сечении определяем из условия :

H = ( 1/12 – 1/18 ) L = ( 1/12 – 1/18 ) 25500 = 2125 – 1416 мм.

Принимаем Н = 1700 мм. Высота сечения балки у опоры Н1 = (0,540,6)*Н = = 900 мм.

Для обеспечения достаточной жесткости при кручении ширина балки по осям вертикальных листов выбирается из условий :

В > L /50 = 25500 / 50 = 510 мм;

В > H / 3 = 600 мм.

Принято В = 600 мм.

Принятые размеры изменим по конструктивным соображениям :

Ширину балки до 740 мм, для обеспечения установки поручней, а также для удобства подхода к тележке. Т. к. мы изменили ширину балки, то можно уменьшить высоту моста, принимаем 1700 мм, следовательно высота сечения балки у опоры будет равняться 850 мм.

Из зависимостей, используемых при проектировании балок переменного сечения получим :

1. B /dп = 24…30, => dп = 740/24…30 = 30,83…24,67 мм. Принимаем dп = 28 мм

2. b’ = dп / 1,4 => b’ = 20 мм.

3. b’’ > 300 мм, это условие выполняется ( b’’ = 700 мм ).

Определяем площади сечения поясов и стенок :

Пояс 1 ………………………………… 2,8*74 = 207, 2 см2.

Пояс 2 …………………………………………… 207, 2 см2.

Стенок …………………… 2*2,0*(170 – 2*2,8) = 657,6 см2.

Площадь всего сечения : F = 1072 см2.

Определяем статический момент элементов сечения относительно оси Х1 – Х1 и у его основания :

Пояс 1 ………………………………… 207, 2 ( 170 – 2,8 / 2 ) = 34933,92 см3.

Пояс 2 ………………………………… 207, 2 ( 2,8 / 2 ) = 290,08 см3.

Стенок ………………………………... 657,6 ( 85 ) = 55896 см3.

Статический момент всего сечения : S = 91120 см3.

Положение центра тяжести сечения относительно оси Х1 - Х1 :

Zo = S / F = 63172 / 743,2 = 85 см.

Моменты инерции относительно горизонтальной оси х – х :

Пояс 1 … ( 74*2,83 / 12 ) + 207,2 ( 170 – 85 – 1,4 )2 = 1448247,8 см4.

Пояс 2 … ( 74*2,83 / 12 ) + 207,2 ( 170 – 85 – 1,4 )2 = 1448247,8 см4.

Стенок … 2( 2,0*164,43 / 12) + 657,6 ( 85 – 82,2 )2 = 1486254,9 см4.

Общий момент инерции сечения Jx = 4382750,5 см4.

Моменты сопротивления сечения относительно оси х – х :

Wx = Jx / H – Z0 = 5156,1 см3.

Моменты инерции элементов рассматриваемого сечения относительно вертикальной оси У – У :

Пояс 1 … 2,8*743 / 12 = 94552,2 см4.

Пояс 2 … 94552,2 см4.

Стенок … 2*( 165,2 * 23 / 12 ) + 657,6*69,62 = 3185739,8 см4.

Общий момент инерции сечения Jу = 3374844,2 см4.

Моменты сопротивления сечения относительно оси У – У :

Wу = 2Jу / В = 91212 см3.

Из аналогичного расчета определены и основные характеристики концевых сечений балки : F = 3792 см2.

Z0 = 42,5 см.

Jx = 803377,2 см4.

Дальнейший расчет производим на статическую прочность исходя из двух основных расчетных случаев :

1) подъем с земли свободно лежащего груза ( подъем с подхватом ) или резкое торможение груза при неподвижном кране;

2) Резкое торможение крана ( или тележки ), передвигающегося с поднятым грузом.

12 Расчет главных балок моста

Нагрузками на рассчитываемую балку в данном случае являются масса поднимаемого груза, масса тележки, собственная масса балки и дополнительные силы инерции при подъеме или торможении груза. Для последующих расчетов примем массу моста Gм = 150 т, массу главной балки G1 = 42 т, массу механизма передвижения G2 = 30 т.

Последующий расчет производим для наиболее нагруженной балки со стороны механизма передвижения. Нагрузка от собственной массы и массы механизма передвижения, приходящаяся на 1 м этой балки, таким образом, будет равна :

gв = (G1 + G2 ) / L = (30000 + 42000) / 25,5 = 2323,5 кгс/м.

Ранее принятая масса тележки Gт = 40000 кг. Балка также будет нагружена крутящим моментом из-за внецентренного приложения нагрузки от массы механизма передвижения моста, в данном случае этой нагрузкой можно пренебречь.

Для определения динамического коэффициента предварительно определяем массы моста и поднимаемого груза :

mм = ( 0,5Gм + Gт ) / g = ( 0,5*150000 + 42000 ) / 981 = 119,3 кгс*с2 / см;

mг = Q / g = 160000 / 981 = 163,1 кгс*с2 / см;

Скорость подъема груза :

V = 4,67 см /с.

Статический прогиб балки от массы поднимаемого груза приближенно определяем из условия ( P = Q ) :

yст = Q L3 / 2*48 E Jx = 160000*25503 / 2*48*2,1*106*4382750,5 = 3 см.

Коэффициент жесткости моста :

см = Q / yст = 160000 / 3 = 53333,3 кгс / см.

Статическое удлинение канатов при подъеме номинального груза Q =160000 кгс :

lст = Q H / i f Eк = 160000*3200 / 8*5,3856*1*106 = 11,8 см.

- где i – кратность полиспаста, f – площадь поперечного сечения каната см2, Ек – модуль упругости каната, Н – высота подъема груза.