1. ВВЕДЕНИЕ
С развитием промышленности и сельского хозяйства объем перевозок на железнодорожном транспорте непрерывно повышается. Это достигается увеличением интенсивности и скорости движения, веса поездов, совершенствованием планирования и регулирования движения поездов. К средствам регулирования движения поездов относится комплекс автоматических систем интервального регулирования, в который входят: автоблокировка, автоматическая локомотивная сигнализация (АЛСН), автоматическое регулирование скорости движения поездов (АРС). Автоблокировка в комплексе с АЛСН позволяет организовать движение поездов попутного следования с малыми интервалами и значительно повысить пропускную способность железнодорожных линий, обеспечить высокую безопасность следования поездов по перегонам и станциям.
При автоблокировке перегон делят на блок-участки (БУ), что позволяет отправлять поезда с интервалом 6—8 мин, а на пригородных линиях, где блок-участки меньшей длины, — с интервалом 3-4 мин. Благодаря этому обеспечивается высокая пропускная способность железных дорог (на двухпутных магистральных линиях до 200 пар поездов в сутки, а на пригородных линиях до 300 пар). Каждый блок-участок оборудуют рельсовой цепью (РЦ), автоматически контролирующей его состояние.
При автоблокировке за счет сокращения потерь времени при обгоне поездов на станциях возрастает участковая скорость движения поездов, повышается производительность труда эксплуатационных работников, сокращаются эксплуатационные расходы.
На участках с электрической тягой на постоянном токе получила применение автоблокировка переменного тока 50 Гц с кодовыми рельсовыми цепями. Использование числового кода позволило осуществить беспроводную автоблокировку, используя в качестве канала связи между светофорами рельсовые цепи, а также выполнить единое кодирование автоблокировки и АЛСН и упростить комплексную систему.
С введением электрической тяги на переменном токе появилась необходимость в рельсовых цепях с частотой питания, отличной от частоты тягового тока, обеспечивающих защиту от опасных и мешающих влияний гармоник тягового тока 50 Гц. В связи с этим были разработаны и нашли применение сначала рельсовые цепи 75 Гц, а затем 25 Гц. Для получения частоты 25 Гц использовали статические преобразователи частоты 50/ 25 Гц, которые применяют на каждой сигнальной установке автоблокировки. Питание на преобразователи подается от высоковольтной линии автоблокировки (основное) и от контактной сети переменного тока промышленной частоты (резервное).
Интенсивное развитие устройств интервального регулирования требует коренного изменения принципов построения систем и методов технического обслуживания. Примером такой новой системы интервального регулирования может служить автоблокировка без проходных светофоров с централизованным размещением аппаратуры (ЦАБ). В этой системе основным средством интервального регулирования является числовая или частотная АЛСН. Релейная аппаратура размещена на станциях, ограничивающих перегон, на пути установлены только трансформаторы или дроссель-трансформаторы, связанные со станциями кабельными цепями. В качестве основной в ЦАБ используется частотная система АЛСН, в качестве резервной — числовая АЛСН. Все рельсовые цепи перегона кодируются со станции от общего кодового путевого трансмиттера. Кодирование начинается с момента вступления поезда на данную рельсовую цепь, значность кода определяется числом рельсовых цепей, разграничивающих попутно следующие поезда.
В таких условиях машинист должен проявлять особую бдительность, чтобы не допустить проезд на занятый блок- участок. Для облегчения работы машиниста и своевременного включения служебного торможения для остановки поезда на границе данного блок- участка устройства ЦАБ дополняют системой автоматического управления тормозами (САУТ). В целях более быстрого внедрения новых систем интервального регулирования выполнены большие работы по совершенствованию технологии производства аппаратуры на заводах. Проектными организациями разработаны типовые принципиальные и монтажные схемы сигнальных установок для всех разновидностей систем автоблокировки и автоматической переездной сигнализации. Организован заводской монтаж релейных шкафов, что позволило ускорить строительство и сдачу в эксплуатацию устройств интервального регулирования движения поездов.
Широкое и быстрое внедрение комплекса автоматических устройств требует совершенствования технологии производства аппаратуры, монтажа строительства и проектирования. В настоящее время все типовые проектные решения по системам автоблокировки и автоматической переездной сигнализации являются комплексными. В них обеспечивается одновременный монтаж и строительство различных устройств.
2. Основные принципы построения автоблокировки переменного тока
2.1 ОБЩИЕ СВЕДЕНИЯ АВТОБЛОКИРОВКИ
Автоматическая система, с помощью которой производятся регулирование движения поездов по межстанционным перегонам магистральных железнодорожных линий и ограждение поездов от возможностей столкновений, получила название автоблокировки. По сравнению с полуавтоматической системой автоблокировка значительно повышает пропускную способность участков и обеспечивает безопасность движения поездов.
В соответствии с требованиями ПТЭ все светофоры должны автоматически закрываться при входе поезда на ограждаемые ими блок-участки, а также в случае нарушения целости рельсовых цепей этих участков. Автоблокировку как средство интервального регулирования движения поездов применяют как на однопутных, так и на двухпутных участках железных дорог. В зависимости от рода тяги используют следующие системы автоблокировки: на участках с автономной тягой — двухпутную и однопутную автоблокировку постоянного тока, на участках с электрической тягой — автоблокировку переменного тока.
Автоблокировку постоянного тока строят с применением импульсных рельсовых цепей постоянного тока, с помощью которых контролируется состояние блок-участков (занят, свободен) и целость рельсовых нитей пути этих блок-участков. Для контроля состояния двух или трех блок-участков, находящихся впереди данного светофора, и осуществления трех- или четырехзначной сигнализации используют двухпроводные линейные цепи (воздушные или кабельные). Автоблокировка постоянного тока с импульсными рельсовыми цепями не обладает достаточной помехозащищенностью и ее нельзя применять на электрифицированных участках.
Автоблокировку проектируют с трех или четырехзначной сигнализацией. Четырехзначная сигнализация применяется на линиях с особо интенсивным движением пригородных поездов, где требуется иметь блок-участки (Б-У) короче минимальной длины, установленной для трехзначной сигнализации. На двухпутных участках автоблокировку проектируют, как правило, для одностороннего движения. Схему однопутной (двухсторонней) автоблокировки проектируют с зависимостями, предусматривающими связь между сигналами встречных направлений, так что движение поездов по сигналам АБ возможно только в одном установленном направлении. Расстановка светофоров осуществляется по тяговым расчетам на основе принятого интервала попутного следования расчетных поездов. Движение поездов при трехзначной АБ должно производиться с разграничением тремя Б-У. Длина Б-У составляет от 1000 до 2600 м. Если на данной длине Б-У нельзя устроить одну рельсовую цепь (РЦ) то устраивается разрезная, с трансляционной точкой без светофора. Сигналы на станциях расставляют в соответствии с разработанной маршрутизацией.
На (рис. 1,а) поясняются принципы построения простейшей двузначной автоблокировки. В пределах блок-участков устроены электрические рельсовые цепи, разграниченные изолирующими стыками по границам этих участков. С одного конца в рельсовую цепь включено путевое реле П, с другого — путевая батарея ПБ и регулируемый резистор Rо.
В двузначной автоблокировке каждый проходной светофор не отражает состояние впереди стоящего светофора, так как линейная цепь отсутствует. Сигнальная цепь включения красного и зеленого огней переключается с помощью контакта путевого реле рельсовой цепи собственного блок-участка.
При отсутствии поезда на блок-участке 7П путевое реле, получая питание из рельсовой цепи, притягивает якорь. Замыкая свой фронтовой контакт, оно включает ток от сигнальной батареи СБ через лампу зеленого огня светофора 7. Горение зеленого огня на этом светофоре указывает на свободность ограждаемого им блок-участка и возможность проследования по нему поезда.
Нарушение целости пути при лопнувшем или изъятом рельсе приводит к тому, что прерывается цепь тока в рельсовой цепи и выключается путевое реле П. Отпуская якорь, оно отключает на светофоре лампу зеленого огня и включает лампу красного огня, чем ограждается опасное место. Нахождение поезда на блок-участке 5П приводит к тому, что колесными парами поезда путевое реле шунтируется и отпускает якорь. При этом на светофоре 5 выключается лампа зеленого огня и включается лампа красного огня. Горением красного огня на светофоре 5 производится ограждение занятого блок-участка. Машинист следующего поезда при приближении к светофору 5 должен своевременно произвести торможение и остановить поезд, не проезжая светофора 5. Горение красного огня на светофоре 5 продолжается до полного освобождения, поездом ограждаемого этим светофором блок-участка, после чего на светофоре красный огонь сменяется на зеленый.
Принципы построения двухпутной трехзначной автоблокировки постоянного тока поясняются на (рис. 1,б). В пределах блок-участков устроены импульсные рельсовые цепи постоянного тока. На входном конце каждого блок-участка включен источник питания в виде путевой батареи ПБ, работающей в буферном режиме с выпрямителем. Ток от ПБ проходит через контакт маятникового трансмиттера МТ, которым осуществляется посылка в рельсовую цепь импульсов постоянного тока.