ΣКрф = 35·4·7 + 15·4·9 = 1400 тс
Поезд считается обеспеченным тормозами, если выполняется условие
ΣКр < ΣКрф ,(10.3)
1135,2 < 1400
Так как условие выполняется, то считаем что поезд обеспечен тормозами.
Расчетный коэффициент силы нажатия тормозных колодок определяется по формуле
δр = ΣКрф/ ΣQ,(10.4)
δр = 1400/3440 = 0,41
Полный расчетный тормозной путь определяется по формуле
Sт = Sп + Sд ,(11.1)
где Sп – подготовленный (предтормозной путь);
Sд – действительный тормозной путь.
Подготовительный путь, м, определяется
Sп = VH·tп ,(11.2)
где VH – скорость движения в начале торможения, м/с;
tп – время подготовки тормозов к действию, с.
Время подготовки автотормозов, с, определяется следующим образом.
tп = 10 + 15 (± i)/bт ,(11.3)
где i - уклон пути, i = - 7‰, знак ''-'' – означает, что расчет ведется на спуске;
bт – удельная тормозная сила, Н/кН.
bт = 1000·φкр·δр ,(11.4)
где φкр – расчетный коэффициент трения тормозных колодок;
δр - расчетный коэффициент силы нажатия тормозных колодок поезда.
φкр = 0,27·(3,6V + 100)/(18V + 100)(11.5)
Действительный тормозной путь, м, определяется по формуле
где к – число интервалов скоростей;
ω – основное удельное сопротивление движению, Н/кН, bт и ω рассчитываются при средней скорости интервала, интервал 2 м/с.
Vср = (VH + VH+1)/2,(11.6)
Основное удельное сопротивление определяем для грузовых вагонов
ω = 0,7 + (3 + 0,36V + 0,0324V2)/0,1q ,(11.7)
где q – осевая нагрузка, кН, q = 245 кН;
V – средняя скорость в интервале, м/с
Замедление движения поезда определяется по формуле
аi = (V2н – V2н+1)/(2·ΔSд) ,(11.8)
t = tп + Σti ,(11.9)
где ti – время торможения в расчетном интервале, с.
ti = (Vн – Vн+1)/ai ,(11.10)
Расчеты замедлений движения поезда и времени торможения представлены в таблице 11.1.
Таблица 11.1 – Расчет тормозного пути
Vн, м/с | φкр | bт, Н/кН | tн, с | Sп, м | Vср, м/с | φкр | bт, Н/кН | ω, Н/кН | Sд, м | ΔSд, м | Sт, м |
22,00 | 0,10 | 41,95 | 4,50 | 98,93 | 23,00 | 0,10 | 41,29 | 1,86 | 125,48 | 15,64 | 224,41 |
20,00 | 0,10 | 43,41 | 4,58 | 91,63 | 21,00 | 0,10 | 42,65 | 1,71 | 109,83 | 15,23 | 201,46 |
18,00 | 0,10 | 45,13 | 4,67 | 84,12 | 19,00 | 0,10 | 44,23 | 1,58 | 94,61 | 14,71 | 178,73 |
16,00 | 0,11 | 47,16 | 4,77 | 76,38 | 17,00 | 0,11 | 46,10 | 1,45 | 79,90 | 14,08 | 156,27 |
14,00 | 0,12 | 49,61 | 4,88 | 68,37 | 15,00 | 0,11 | 48,32 | 1,34 | 65,82 | 13,33 | 134,18 |
12,00 | 0,12 | 52,61 | 5,00 | 60,05 | 13,00 | 0,12 | 51,03 | 1,24 | 52,49 | 12,43 | 112,54 |
10,00 | 0,13 | 56,39 | 5,14 | 51,38 | 11,00 | 0,13 | 54,39 | 1,14 | 40,06 | 11,38 | 91,44 |
8,00 | 0,14 | 61,29 | 5,29 | 42,29 | 9,00 | 0,14 | 58,67 | 1,06 | 28,67 | 10,15 | 70,97 |
6,00 | 0,16 | 67,87 | 5,45 | 32,72 | 7,00 | 0,15 | 64,32 | 0,99 | 18,52 | 8,71 | 51,24 |
4,00 | 0,18 | 77,22 | 5,64 | 22,56 | 5,00 | 0,17 | 72,10 | 0,93 | 9,81 | 7,02 | 32,37 |
2,00 | 0,21 | 91,51 | 5,85 | 11,71 | 3,00 | 0,19 | 83,53 | 0,88 | 2,79 | 1,79 | 14,50 |
0 | 0,27 | 116,10 | 6,10 | - | 1,00 | 0,24 | 101,93 | 0,84 | 1,00 | 1,00 | 1,00 |
Vн, м/с | аi, м/с2 | ti, с | tп, с | Σti, с | t, с |
22 | 2,69 | 0,74 | 4,50 | 15,43 | 19,92 |
20 | 2,50 | 0,80 | 4,58 | 14,68 | 19,26 |
18 | 2,31 | 0,87 | 4,67 | 13,88 | 18,55 |
16 | 2,13 | 0,94 | 4,77 | 13,02 | 17,79 |
14 | 1,95 | 1,03 | 4,88 | 12,08 | 16,96 |
12 | 1,77 | 1,13 | 5,00 | 11,05 | 16,06 |
10 | 1,58 | 1,26 | 5,14 | 9,92 | 15,06 |
8 | 1,38 | 1,45 | 5,29 | 8,66 | 13,94 |
6 | 1,15 | 1,74 | 5,45 | 7,21 | 12,66 |
4 | 0,85 | 2,34 | 5,64 | 5,46 | 11,10 |
2 | 1,12 | 1,79 | 5,85 | 3,12 | 8,98 |
0 | 1,50 | 1,33 | 6,10 | 1,33 | 7,43 |
В данном курсовом проекте были спроектированы воздушная часть тормозной системы вагона и механическая часть колодочного тормоза. Причем основная часть деталей и приборов принята типовой, что значительно снижает их себестоимость.
Так же была произведена оценка обеспеченности поезда тормозными средствами и проверка эффективности тормозной системы поезда.