Смекни!
smekni.com

Проектирование тормозной схемы электровоза (стр. 1 из 3)

Введение

Автоматические тормоза подвижного состава должны обеспечивать безопасность движения поездов, обладать высокой надежностью и безопасностью действия. Обеспечение этих условий позволяет повысить скорость движения и вес поездов, что приводит к увеличению провозной и пропускной способности железнодорожного транспорта.

Данный курсовой проект позволяет овладеть теоретическими и практическими знаниями проектирования автотормозной техники, изучить устройство и работу тормозных систем подвижного состава, ознакомиться с методами расчетов тормозного оборудования вагонов.


1. Задание на курсовой проект

Исходные данные для выполнения курсового проекта выбираются из табл. 1.1 и 1.2. Вариант задания принимается по двум последним цифрам шифра указанного в зачетной книжке.

Исходные данные для расчета колодочного тормоза вагона:

Тип вагона- рефрижераторный

Количество осей вагона-4

Тара вагона, т-32

Грузоподъемность, т-50

Тип колодок-композиционные.

Исходные данные для обеспеченности поезда тормозными средствами и оценки эффективности тормозной системы поезда:

4-осн. грузовые (брутто 88 т)-12

4-осн. рефрижераторные (брутто 84 т)-35

4-осн. грузовые (брутто 24 т)-24

Скорость, км/ч-90

Уклон пути (спуска), ‰-7

Тормозные колодки-чугунные

Локомотив-2ТЭ116.

2. Выбор схемы и приборов пневматической части тормоза вагона

На железнодорожном транспорте применяется автоматический пневматический тормоз. Автоматическими называются тормоза, которые при разрыве поезда или тормозной магистрали, а также при открытии стоп-крана из любого вагона автоматически приходят в действие вследствие снижения давления воздуха в магистрали. Данный вагон также оборудуется авторежимом. Схема тормозного оборудования представлена на рисунке 2.1.


Рисунок 2.1 - Схема тормозного оборудования вагона

Таблица 2.1 - Номенклатура тормозных приборов и арматуры пневматической части

№ на рис.2.1 Наименование Условный № Количество
1 Главная часть воздухораспределителя 270-023 1
2 Двухкамерный резервуар 1
3 Магистральная часть воздухораспределителя 483М-010 1
4 Кронштейн пылеловка 573 1
5 Концевые краны 190 2
6 Разобщительный кран 372 1
7 Запасной резервуар Р10-100 1
8 Тормозной цилиндр 510Б 1
9 Авторежим 265А-1 1
10 Соединительные рукава Р17Б (ГОСТ 1335-84) 2
11 Тормозная магистраль 1¼'' 1

3. Расчет давления воздуха в тормозном цилиндре, при торможении

Давление в тормозных цилиндрах при торможении зависит от типа воздухораспределителя, величины снижения давления в тормозной магистрали, режима торможения у грузовых воздухораспределителей и загрузки вагона при наличии авторежима.

Для воздухораспределителей грузового типа давление в тормозных цилиндрах при полном служебном и экстренном торможении зависит от установленного режима. При порожнем режиме – 0,14 ~ 0,16 МПа; при среднем – 0,28 ~ 0,33 МПа; при груженом – 0,39 ~ 0,43 МПа.

При ступенчатом торможении давление определяется из условия равновесия уравнительного поршня

Ртц = (Fу·Ро + Ру + Жу·li)/ Fу,(3.2)

где Fу– площадь уравнительного поршня, 20·10-4 м2;

Ро– атмосферное давление, Па;

Ру– усилие предварительного сжатия режимных пружин, 185 Н;

Жу– суммарная жесткость режимных пружин, на порожнем режиме Жу = 8400 Н/м, на среднем - Жу = 8400 ~ 0,5·32700 Н/м; на груженом – Жу = 8400 ~ 32700 Н/м;

li – перемещения уравнительного поршня после i–й ступени торможения, м; li = hi – 0,0065;

hi – перемещения главного поршня после i–й ступени торможения, м.

Условие равновесия главного поршня

рркi·Fг = рзкi·(Fг – Fш) + Рг + Жгhi.(3.3)

Давление в рабочей камере после ступени торможения

рркi = (рркVр)/(Vр + Fгhi),(3.4)

где рзкi, рмi – абсолютное давление в золотниковой камере и тормозной магистрали при i-й ступени торможения, Па;

Fг – площадь главного поршня, 95·10-3, м2;

Fш – площадь штока главного поршня, 4,15·10-4, м2;

Рг – усилие предварительного сжатия пружины главного поршня, 200 Н;

Жг – жесткость пружины главного поршня, 28000 Н/м;

Vр – объем рабочей камеры, 6·10-3 м3;

ррк – абсолютное зарядное давление рабочей камеры, Па, ррк = рм;

рзкi= рмi.

В результате совместного решения уравнений (3.3) и (3.4) получается квадратное уравнение относительно hi.

Аhi2 + Вhi + C = 0,(3.5)

А = Жг·Fг,(3.6)

В = Жг·Vр + Fг·рмi(Fг – Fш) + Рг·Fг,(3.7)

С = Vр[(Fг – Fшмi + Рг - Fг·рм].(3.8)

Таблица 3.1 – Расчет давлений в тормозном цилиндре при ступенях торможений и полном служебном

Δртм, МПа 0,08 0,10 0,12 Полное служебное торможение
Рстц, МПа 0,22 0,27 0,32 Ртц, МПа 0,43

Наличие на вагоне авторежима устанавливает зависимость давления воздуха в тормозном цилиндре от загрузки вагона, которая выражается формулой

где fпр – величина предварительного подъема опорной плиты, м;


где fi – величина статического прогиба рессор, м;

Рцп – давление в тормозном цилиндре порожнего вагона, МПа;

fi = 0,01 Q fo Qi ,(3.11)

fo – гибкость центрального рессорного подвешивания вагона, 0,0006225 м/т;

Qi – загрузка вагона в процентном соотношении от полной;

Q – грузоподъемность вагона, т;

Рвр – давление на выходе из воздухораспределителя при полном служебном торможении, МПа.

Результаты расчета представлены в таблице 3.2.

Таблица 3.2 – Расчет давлений в тормозном цилиндре при наличии авторежима

Q,% 0 10 20 30 40 50 60 70 80 90 100
Pтц, МПа 0,269 0,289 0,309 0,330 0,352 0,375 0,400 0,43 0,43 0,43 0,43

Принимаем максимальное давление Рмтц = 0,43МПа.

4. Качественная оценка правильности выбора воздушной части тормоза

На основании закона Бойля – Мариотта состояние сжатого воздуха в выбранных емкостях воздушной части тормозной системы до торможения и при торможении аналитически выражается равенством


РзVзр + РоVо = РзрVзр + Рмтц (Vо + πd2тцL/4) ,(4.12)

где Рз – максимальное абсолютное зарядное давление воздухопроводной магистрали, МПа;

Vзр – объем запасного резервуара, м3;

Vо – объем вредного пространства тормозного цилиндра,м3;

Рзр – абсолютное давление воздуха в запасном резервуаре при торможении, МПа;

Рмтц – максимальное абсолютное давление воздуха в тормозном цилиндре, МПа;

dтц – диаметр тормозного цилиндра, м;

L – допустимый ход поршня тормозного цилиндра при торможении, м.

Качественная оценка правильности выбора воздушной части в грузовых поездах производится по условию их неистощимости

Рзр ≥ Рз – ΔРтм ,(4.13)

где ΔРтм = 0,15 МПа – разрядка тормозной магистрали при полном служебном торможении.

0,59 > 0,7 – 0,15 = 0,55.

Так как условие выполняется, то делаем вывод о неистощимости пневматического тормоза.


5. Выбор схемы тормозной рычажной передачи

Рисунок 5.1 – Схема рычажной передачи 8ми-осного грузового вагона: 1 - Горизонтальный рычаг; 2 - Затяжка горизонтальных рычагов; 3 – Тяги; 4 - Горизонтальный балансир; 5 - Вертикальный рычаг; 6 - Затяжка вертикальных рычагов; 7 – Траверса; 8 – Подвески башмака

В рефрижераторных вагонах применяется колодочный тормоз с двухсторонним нажатием. Данная схема эффективна при скоростях движения до 160 км/ч. При более высоких скоростях схема неэффективна. Основным ее недостатком является интенсивный износ колесных пар по профилю катания, а также навары при торможении.

6. Определение допускаемого нажатия тормозной колодки

С целью создания эффективной тормозной системы величина нажатия тормозной колодки на колесо должна обеспечивать реализацию максимальной тормозной силы. Вместе с тем необходимо исключить возможность появления юза при торможении. При условиях сухих и чистых рельсов это положение для колодочного тормоза аналитически выражается уравнением


К·φк = 0,9·Рк·ψк ,(6.1)

где К – допускаемая сила нажатия колодки на колесо, кН;

φк -коэффициент трения тормозной колодки;

0,9 - коэффициент разгрузки задней колесной пары;

Рк - статическая нагрузка на колесо, отнесенная к одной тормозной колодке, кН;

ψк - коэффициент сцепления колеса с рельсом при торможении.

Значения коэффициента трения для стандартных чугунных колодок определяются по следующей эмпирической формуле