Вывод: Проанализировав технико-экономические показатели строительства АТП, мы увидели, что они свидетельствуют о целесообразности строительства, так как срок окупаемости капитальных вложений на строительство – 1,6 года, фактический коэффициент экономической эффективности Еф=0,25, рентабельность производства составляет 38%.
На эксплуатационных предприятиях большое количество оборудования выпуска 60х и ранее годов. В те времена мощности двигателей и передающих систем были значительно меньше, чем сегодня.
В связи с острой необходимостью повышения качества ремонта и обслуживания автомобилей необходимо расширить возможности имеющегося оборудования.
В дипломном проекте предлагается существующий на предприятии стенд для обкатки коробок передач приспособить для испытания коробок передач современных автомобилей (ЯМЗ, КамАЗ). Для этого требуется увеличить мощность двигателя и соответственно выполнить расчёт привода стенда, клиноременной передачи привода стенда и разработать дополнительный гидроцилиндр в механизме закрутки валов, что даст возможность реверсирования работы стенда – это позволяет существенно уменьшить время обкатки коробок передач.
С внешней стороны левого редуктора установлен гидравлический рабочий цилиндр с поршнем и поршневыми кольцами. Шток поршня с механизмом закрутки связан через пустотелый вал редуктора. Утолщённый конец пустотелого вала редуктора имеет цилиндрическую выточку в стенках которой прорезаны спиральные щели. Вилка торсионного вала, смонтированная внутри цилиндрической выточки пустотелого вала левого редуктора, имеет прямые щели. Шток поршня при помощи шкворня связан с вилкой торсионнго вала второй конец которого через шлицевую втулку соединён с валом правого редуктора. При движении поршня шток через упорные кольца подшипника перемещает шкворень, концы которого скользят в щелях цилиндрической выточки и вилки торсионного вала. Перемещение шкворня по щелям создаёт смещение поршневого вала, т.е. закручивает его в замкнутом контуре, тем самым создавая нагрузку, величина крутящего момента торсионного вала, зависящая от угла закрутки торсионного вала устанавливается тарировкой.
Здесь управление нагрузкой осуществляется при помощи трёхходового крана. При повороте рукоятки крана вправо масло из бака насосом подаётся в рабочий цилиндр создавая нагрузку. В данном стенде испытание производится в одном направлении вращения, потому, что при реверсировании нет возможности создать нагрузку противоположного знака.
Стенд состоит из электродвигателя, клиноременной передачи, вертикального редуктора, правого и левого боковых редукторов, механизма переключения, механизма закрутки валов, двух индукционных датчиков, станций гидропривода и смазочной станции.
Стенд представляет собой установку с замкнутым силовым контуром в котором коробка передач нагружается за счёт использования внутренних сил системы при закручивании торсионного вала. Электродвигатель через клиноременную передачу передаёт вращение на вал I, на котором жестко насажена коническая шестерня (z=15, m=12), находящаяся в зацеплении с конической шестернёй (z=31, m=12) вертикального редуктора приводящей во вращение вал II. Вал II через три цилиндрические шестерни (z=23, m=12) передаёт вращение на вал II, который через зубчатую муфту связан с первичным валом испытываемой коробки передач. От вала I через шестерни КП вращение передаётся на карданные валы VII и VIII, затем через цилиндрические шестерни (z=28, m=8, z=20, m=8, z=20, m=8) боковых редукторов на промежуточный вал V на котором на подшипник насажена цилиндрическая шестерня (z=42, m=8) механизма переключения. На шлицах передвигается каретка (z=21, m=8) чем достигается включение 1й и 2й передач вращения вала IV. Таким образом, получается замкнутый силовой контур.
Нагрузочный крутящий момент создаётся при помощи механизма закрутки валов (вала IV и части вала I до конической шестерни (z=15, m=12) в противоположной стороне).
Упругие силы, возникающие внутри замкнутого контура создаёт момент под воздействием которого находятся шестерни коробок передач.
Закрутку валов IV и I осуществляют косозубыми шестернями (угол наклона зубьев b=45°), находящихся в зацеплении с блок-шестерней (z=17, m=10, b=45°). Блок-шестерня установлена на подшипниках на штоке, связанном противоположными концами с поршнями гидроцилиндров одностороннего действия. При перемещении одного поршня гидроцилиндра производится закрутка торсионных валов IV и I.
Для создания крутящего момента противоположного направления включают другой гидроцилиндр.
4.4. Расчёт стенда для испытания коробки передач Расчёт номинальных параметров коробок передач Частота вращения первичного вала КП от двухскоростного трёхфазного асинхронного двигателя АО 92‑8/4: N=40/55 кВт, n=730¸1470 мин-1, питание 380 В.
Через коническо-цилиндрический редуктор
мин-1.Вращающие моменты на первичном валу с учётом потерь в редукторе
Н×м,гдеhр=0,94-КПД редуктора.
Коробка передач – двухступенчатая.
Передаточное число на первой передаче:
.Передаточное число на второй передаче:
.Частота вращения вторичного вала
мин-1.
Вращающие моменты на вторичном валу
Н×м,
гдеhКП=0,95-КПД коробки передач.
Каждый из вращающих моментов М2 поровну передаётся на передний и задний мост ходовой части автомобилей.
Выбор электродвигателя Целью испытания коробок передач является проверка их работоспособности, долговечности, качества изготовления и ремонта, обкатки и приработки зубчатых зацеплений и других сопряженных деталей.
Зубчатые передачи в транспортных и грузоподъёмных машинах работают при переменных режимах, нагружениях, зависящих от множества случайных факторов и, следовательно, имеют вероятностный характер.
В связи с этим стенд снабжён устройством для программного нагружения. Практически все способы нагружения стендов с замкнутым контуром могут быть использованы в многоредукторном стенде данной конструкции. Где применена предварительная закрутка торсионного вала с помощью пары косозубых колёс.
Механизм закрутки валов представляет собой пару косозубых колёс, свободно вращающихся на совмещённом штоке двух гидроцилиндров. Осевое перемещение зубчатых колёс с помощью гидроцилиндров, управляемых по давлению масла с помощью клапанно-золотникового устройства по нужной программе, позволяет создать циркулирующую нагрузку в замкнутом контуре стенда, в который включена испытуемая КП.
Для имитации реверса производится перемена направления силового потока за счёт перемещения зубчатых колёс в обратную сторону. Холостой ход при обкатке коробки передач обеспечивается при нейтральном положении золотника (совмещённый шток гидроцилиндров с помощью пружинного устройства занимает при этом нейтральное положение) или при отключённой зубчатой муфте на валу III привода первичного вала коробки.
В стенде для кинематического согласования силовой цепи число однотипных редукторов в контуре должно быть четным. Поэтому механизм переключения и коническая передача вертикального редуктора представляет собой зеркальное отображение испытуемой коробки передач.
Коническая передача вертикального редуктора – m=12 мм, z1=15, z2=31 на валах I и II.
Механизм переключения между валами IV и V
I‑я передача: z1=20, z2=42, m=8 мм;
II‑я передача: z1=41, z2=21, m=8 мм.
Боковые левые и правые редукторы стенда кинематически одинаковые z1=28, z2=20, z3=28, m=8 мм замыкают вторичный вал испытуемой КП. Паразитное зубчатое колесо (z2=20, m=8 мм) служит конструктивно для увеличения межосевого расстояния с целью расположения валов V и VI стенда за габаритами испытуемой коробки передач.
Косозубые передачи механизма закрутки валов соединяют валы I и IV, создавая циркулирующую нагрузку путём их осевого перемещения без изменения частоты z1=23, z2=17, m=10 мм, b=45°.
Вертикальный редуктор состоит из цилиндрических колёс (z1=23, z2=23) с передаточным числом равным 1. Паразитное колесо этого редуктора согласует направление вращения первичного вала испытуемой коробки с вторичным, т.е. осуществляет общее кинематическое согласование стенда по направлению вращения.
Номинальную мощность электродвигателя стенда определяем исходя из величины нагрузочного момента коробки передач и потерь на трение в механизмах стенда.
,гдеh1=h2=0,95-КПД боковых редукторов (левого и правого);
h3=0,94-КПД вертикального редуктора;
h4=0,96-КПД зубчатого механизма закрутки валов;
h5=0,98-КПД зубчатого механизма переключения.
При восьми полюсах
кВт.
При четырёх полюсах
кВт.Принимаем для привода стенда двухскоростной двухфазный асинхронный электродвигатель напряжением 380 В 4А132М8/4 с N=5,5/11 кВт; n=720/1460 мин-1;