Рис. 1. Схема системы питания газобаллонного автомобиля:
1 — проставка, 2 — фильтр-отстойник, 3 — топливный насос, 4 — карбюратор. 5 — смеситель газа, 6 — трубка, соединяющая редуктор с всасывающим трубопроводом, 7,9 — шланги для подвода и отвода жидкости системы охлаждения в испаритель, 8 — испаритель, 10 — трубка для отвода газа в систему холостого хода, 11 — шланг основной подачи газа, 12 — дозирующе-экономайзерное устройство, 13—редуктор газа, 14— газовый фильтр, 15—сетчатый фильтр, 16 — манометр первой ступени редуктора, 17 — указатель уровня сжиженного газа в баллоне, 18 — магистральный вентиль, 19 — топливный бак, 20 — баллон для сжиженного газа, 21 — расходный вентиль паровой фазы, 22 — расходный вентиль жидкой фазы
и газом не обеспечивает его испарение. В этом случае питание двигателя осуществляется паровой фазой газа через вентиль 21. После прогрева двигателя его питание осуществляется жидкой фазой газа через вентиль 22. Питание двигателя жидкой фазой позволяет исключить кипение жидкости и падение давления в газовом баллоне, а также сохранить стабильность показателей газа, так как в жидкой фазе все компоненты хорошо перемешаны и химический состав топлива практически не меняется по мере опорожнения баллона.
Из баллона газ подводится к магистральному вентилю 18, который служит для быстрого прекращения подачи газа к двигателю. Управляют вентилем из кабины водителя. После магистрального вентиля сжиженный газ попадает в испаритель 8, в котором через шланги 7 и 9 циркулирует горячая жидкость из системы охлаждения двигателя. Пройдя змеевик испарителя, сжиженный газ из жидкого состояния полностью переходит в парообразное и подвергается очистке. Для этой цели в системе установлены фильтр 14 с войлочными кольцами и сетчатый фильтр 15.
Очищенный газ подается в редуктор 13, где происходит двухступенчатое снижение давления до величины, близкой к атмосферному давлению. Управление работой редуктора осуществляется разрежением из всасывающего трубопровода, которое передается в него по трубке 6. Из редуктора через дозирующе-экономайзерное устройство 12 и шланг 11 основной подачи газ направляется в смеситель 5 газа.
Кроме того, по трубке 10 газ, минуя дозирующе-экономайзерное устройство, из редуктора подается в систему холостого хода смесителя. В смесителе газ смешивается с воздухом, образуя горючую смесь, которая засасывается в цилиндры двигателя.
Газобаллонная установка автомобиля снабжена двумя контрольными приборами: дистанционным электрическим манометром 16, показывающим давление газа в первой ступени редуктора, и указателем 17 уровня сжиженного газа в баллоне.
Резервная система питания двигателя бензином состоит из топливного бака 19, фильтра-отстойника 2, топливного насоса 3 и однокамерного карбюратора 4, установленного на проставке 1, расположенной под газовым смесителем.
Наличие на автомобиле резервной системы питания создает возможность при полном израсходовании газа или неисправности газовой аппаратуры работы двигателя на бензине. При переходе с газообразного топлива на бензин, или наоборот, не следует допускать работу двигателя на смеси двух топлив, так как это приводит к обратным вспышкам, опасным в пожарном отношении.
При переводе питания двигателя с одного вида топлива на другой обязательно останавливают двигатель. При этом перекрывают подачу и вырабатывают из системы один вид топлива, затем рычаг управления дроссельной заслонкой присоединяют к карбюратору (или, наоборот, к смесителю), открывают подачу другого вида топлива и пускают двигатель обычным способом.
2.РАСЧЕТ ПЕРИОДИЧНОСТИ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА СИСТЕМЫ ПИТАНИЯ ГАЗОБАЛЛОННОГО АВТОМОБИЛЯ.
Для расчетов курсового проекта за единицу транспортного средства будем принимать следующие данные:
легковой автомобиль ВАЗ 2107, в котором используется газобаллонное оборудование:
среднесуточный пробег – 125 км;
категория условий эксплуатации – I.
Для расчёта производственной программы необходимо предварительно выбрать нормативные значения пробегов подвижного состава до КР и периодичности ТО-1 и ТО-2, которые установлены положением для определённых, наиболее типичных условий, а именно: I категории условий эксплуатации, базовых моделей автомобилей, умеренного климатического района с умеренной агрессивностью окружающей среды.
Нормативный пробег автомобиля малого класса (ВАЗ-2107) составляет:
- до КР – Lнц=150.000 км;
- до ТО-1 – Lн1=5.000 км;
- до ТО-2 – Lн2=20.000км.
Однако для конкретного предприятия указанные выше условия могут отличаться, поэтому, в общем случае, расчетный ресурсный пробег (LР) и периодичности TO-1 (L1) и ТО-2 (L2) определяются с помощью коэффициентов (табл. 1.3).
где К1 - коэффициент, учитывающий категорию условий эксплуатации;
K2 - коэффициент, учитывающий модификацию подвижного состава;
K3 - коэффициент, учитывающий климатический район;
- нормативный ресурсный пробег, км;
- нормативная периодичность соответственно TO-I и ТО-2, км;
Нормативный расчетный пробег до капитального ремонта
определяется как нормативный ресурсный пробегСогласно нормативам периодичности ТО должны быть кратны между собой, а ресурсный пробег кратен периодичности ТО. При корректировке эта кратность может быть нарушена. Поэтому, для дальнейших расчетов, необходимо скорректировать нормативные ресурсный пробег и периодичности между собой и со среднесуточным пробегом. Допускаемое отклонение от нормативов периодичности ТО составляет ±10%.
3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ ПИТАНИЯ ДВИГАТЕЛЕЙ С ГАЗОБАЛЛОННЫМИ УСТАНОВКАМИ
Основные неисправности газобаллонных установок их признаки и способы устранения
При работе двигателя на газе в системе питания могут возникнуть неисправности, которые вызывают затрудненный пуск двигателя, неустойчивую работу на холостом ходу, неудовлетворительные переходы от холостого хода к нагрузочным режимам, снижение мощности двигателя. Ниже рассмотрены признаки и способы устранения этих неисправностей.
Негерметичность соединений газовой установки может быть двух видов: внутренняя и внешняя. Под внутренней негерметичностью газового оборудования понимают неплотности, в результате которых происходит утечка газа в систему питания. Наиболее часто эта неисправность встречается в подвижных запорных соединениях (клапан — седло) у расходных и магистрального вентилей, а также в клапанах первой и второй ступеней редуктора.
При внутренней негерметичности расходных и магистральных вентилей в трубопроводах и аппаратуре газовой установки автомобиля все время будет избыточное давление газа. При этом увеличивается вероятность утечки газа в окружающее пространство и не допускается проводить ремонт газовой аппаратуры и перевод двигателя на работу с газа на бензин.
Утечки газа через клапан первой ступени редуктора определяются по показанию манометра редуктора. В этом случае при остановке двигателя повышается давление в камере первой ступени, что может повлечь за собой открытие клапана второй ступени редуктора. При этом газ начнет выходить в подкапотное пространство.
Нарушение герметичности клапана второй ступени, который выполняет роль запорного вентиля при неработающем двигателе и открытых магистральном и расходном вентилях, вызывает утечку газа из редуктора в смеситель и далее через воздушный фильтр в подкапотное пространство.
Причиной нарушения герметичности соединений типа клапан — седло является попадание механических примесей (окалина, стружка, кристаллы сернистых соединений и др.) на их запирающие поверхности, а также повреждение уплотнителя клапана. Внешняя негерметичность представляет собой неплотность газового оборудования, вызывающего утечку газа в окружающее пространство. Неплотность топливной аппаратуры, арматуры и топливопроводов ведет к утечкам газа в зонах технического обслуживания и стоянки газобаллонных автомобилей и может создать опасную концентрацию газа, превышающую санитарные нормы и требования пожаро- и взрывобезопасности.
По характеру работы все соединения газовой установки автомобиля могут быть разделены на соединения, работающие под высоким (1,6 МПа) и низким (0,2 МПа) давлениях. Соединения, работающие под высоким давлением, в свою очередь, подразделяются на работающие под давлением жидкой или паровой фазы газа.
Учитывая, что истечение газа прямо пропорционально давлению и что масса жидкого газа приблизительно в 250 раз больше парообразного, наибольшую опасность с точки зрения утечек представляют соединения, работающие под высоким давлением жидкой фазы газа.
Способы устранения утечек газа зависят от конструкции соединений и характера неисправностей. В ниппельном соединении утечку устраняют дополнительной затяжкой гайки. Если затяжкой гайки утечка не устраняется, то разбирают соединение, отрезают конец трубки вместе с ниппелем и собирают соединение с новым ниппелем. В соединениях, уплотняемых конической резьбой, степень герметичности может повышаться покрытием резьбы свинцовым глетом или клеями АК-20, БФ-2.