Смекни!
smekni.com

Управление отработавшим газом в турбокомпрессоре (стр. 5 из 5)

Поскольку тенденция постоянно идет к небольшим нагнетателям с малыми моментами инерции масс, что гарантирует наличие хорошего характера срабатывания с низких частот вращения, то в соответствии с этим положением все производители реструктурируют свои программы. Не только новые знания, но и новые производственные технологии формирования геометрии колес позволили использовать малые нагнетатели в двигателях с большой поглощающей потребностью. Так, например, габариты нагнетателей, которые еще недавно использовались в двигателях легковых автомобилей, сегодня уже появились в классе легких и средних автомобилей для перевозки грузов и пассажиров; в этом нас убеждает и приведенный обзор на расположенном рядом рисунке.

Например, с середины 80-х годов Audi Quattro поставлялись еще с ККК - нагнетателями габарита К 27. Диаметр колеса турбины этого нагнетателя составляет 76 мм. Разумеется, двигатели гоночных автомобилей нуждаются в более крупных нагнетателях, но все-таки и здесь сегодня необходима соответствующая подгонка нагнетателей к таким моторам и были бы, несомненно, возможны нагнетатели конструктивного ряда К 1 (К 14 или К 16) с диаметрами 50 и соответственно 55 мм. Но еще в 1992 году 2,2-литровый пятицилиндровый турбодвигатель Audi модели S2 был оснащен ККК - нагнетателем конструктивного ряда К 24; этот нагнетатель обслуживает сегодня легкие двигатели грузовых автомобилей (например, 3,9-литровый Iveco 8040 или Mercedes ОМ 364А, оба рядные четырехцилиндровые двигатели.

Диаметр колеса турбины К 24 составляет 59 мм. Исключительная конструкция двигателя, а также высокотехнологичное регулирование давления наддува и высокая базовая степень сжатия в итоге делают чудо, а именно, сам двигатель с таким обычно не принятым в сфере легковых автомобилей нагнетателем очень рано начинает создавать давление наддува. Самый юный турбодвигатель Audi, премьера которого состоялась на IAA в 1997 году, имел два ККК - нагнетателя конструктивного ряда К 0, который до конца 1997 года являлся самым малым классом в производственной программе ККК.

Оба нагнетателя конструктивного ряда К 03 имеют диаметр колеса турбины 45 мм. Даже если бы двигатель Audi стал монотурбо, то нагнетатель К 04 обходился бы всего лишь 50 мм в диаметре. И здесь четко виден прогресс, который был сделан в течение всего лишь нескольких лет. Новый добавленный самый нижний конструктивный ряд ККК с обозначением КР замыкает модельную палитру и предназначен для диапазона мощности от 20 до 80 кВт. Мини-нагнетатель этой серии, который обозначен как К 31 и имеет такой же диаметр 31 мм колеса турбины, нашел в 1999 году применение в 0,8-литровом дизеле с непосредственным впрыскиванием MCC Smart. Серия К 0, которая еще совсем недавно являлась самой нижней в палитре моделей, начинает также с 20 кВт, но верхняя граница доходит уже до 1 20 кВт. Благодаря добавлению ряда самых малых нагнетателей, которые обыкновенно подходят к выпускным коллекторам стандарта DIN-A-4, конструктивный ряд К 0 можно ограничить крупными двигателями, причем оптимально достигается настройка между хорошим характером срабатывания и высокой производительностью.

Аналогичным образом стали поступать и другие производители турбонагнетателей. У Garrett появился новый конструктивный ряд Т 1 2 как новая группа для наддува двигателей с малыми рабочими объемами. Т 12 используется в 40 кВт/54 л.с. - сильном трехцилиндровом бензиновом двигателе Smart с объемом 600 см3.

Различные типы турбонагнетателей.

Когда речь заходит о «типах», то это в основном относится к принципу работы турбины, работающей на отработавшем газе. Турбины турбонагнетателей различаются радиальные, осевые и смешанные (Mixed Flow). Радиальные турбины стали уже стандартом для применения в легковом и грузовом транспорте, осевые турбины используются в крупногабаритных двигателях (например, судовых). И новым приложением для автомобильных двигателей стала смешанная турбина.

Осевая турбина.

В осевой турбине колесо создает исключительно аксиальное направление потока. Такие турбины используются на судах с мощностью двигателя в зависимости от турбонагнетателя с 2000 кВт, но в судовых двигателях можно обнаружить и радиальные турбины.

Выбор типа нагнетателя, будет ли он осевой или радиальный, определяется диаметром колеса турбины. Осевой нагнетатель не может иметь малый диаметр, в противном случае от этого пострадает коэффициент полезного действия (малые длины лопаток, большие потери на зазорах). У радиальных турбин диаметр ограничивается прежде всего по эксплуатационно-техническим причинам (срок эксплуатации и нагрузка на лопатки за счет импульсов потока). Производитель судовых двигателей из Аугсбурга MAN B&W, который производит также и крупные нагнетатели, использует, например, радиальные турбины до моторной мощности около 4500 кВт в зависимости от турбонагнетателя. В диапазоне между 2000 и 4500 кВт появляется альтернатива радиальной турбине в виде осевой турбины, но здесь появляется и другой, стоимостной фактор: изготовление радиальной турбины по сравнению с осевой обходится почти в два раза дешевле.

Среди прочего осевые турбины характеризуются подключенным, неподвижно соединенным направляющим аппаратом (nozzle ring), который помимо редукции колебательных импульсов осуществляет оптимальное обтекание колеса турбины отработавшими газами двигателя.

Радиальная турбина.

Стандартом для двигателей легковых и грузовых автомобилей является радиальная турбина. Воздушный поток проходит центростремительно, то есть вращает колесо в радиальном направлении и покидает его в осевом направлении. О карте характеристик, эксплуатационных свойствах и параметрах радиальной турбины еще будет идти речь в этой книге.

Турбина смешанного типа.

В Японии с 1995 года производитель нагнетателей IHI использует турбинные колеса, которые по геометрии лопаток и углу обтекания отличаются от существующих радиальных турбин. Поток отработавшего газа подается на колесо у так называемой Mixed Flow-турбины не в радиальном, а в полуосевом направлении. В итоге получился какой-то «гермафродит» из радиальной и осевой турбин. Поэтому обтекание колеса выполняется наискосок снизу. Лопатки соответственно имеют пространственную кривизну, отчего внешний диаметр становится непостоянным. Mixed Flow-турбины также нашли применение в судостроении. Там они преимущественно и используются, поскольку их собственная техническая характеристика - в противоположность радиальным или осевым турбинам - коэффициент полезного действия турбины, может быть лучше согласована с линией гребного винта судового двигателя. Судовой двигатель действует исключительно при рабочей линии постоянной нагрузки и частоты вращения - совершенно противоположно двигателю грузовых автомобилей - не говоря уже о двигателях легковых автомобилей. Но от преимуществ такого экзотического типа турбинного колеса не отказались грузовые транспортные средства, поэтому Mixed Flow-турбины были опробованы на двигателях грузовых автомобилей и там широко запущены в серийное производство.

IHI все больше обращает внимание на сектор легковых автомобилей и постепенно дополняет свои конструктивные ряды Mixed Flow-турбинными колесами для использования в этой сфере. Из-за иных по типу эксплуатационных свойств двигателей легковых автомобилей Mixed Flow-турбина подверглась дальнейшему совершенствованию, поскольку в противоположность судовым двигателям серийный двигатель почти всегда находится в нестационарном режиме, то есть под переменной нагрузкой. Достигнутые IHI результаты многообещающи: использование в двигателях легковых автомобилей по сравнению с радиальной турбиной выявили отчетливо лучшие нестационарные свойства. Непосредственно в этой области Mixed Flow-турбины демонстрируют свое самое большое преимущество, а именно, минимальный диаметр колеса и связанная с этим малая инерция масс.