2. АЛГОРИТМ ПУСКА И ВЗЯТИЯ ПОД НАГРУЗКУ АДГ
Процессы управления СЭУ состоят из определенных операций по изменению режимов работы системы и механизмов. Эти операции выполняются в строгой последовательности, с учетом состояния энергетического оборудования и в соответствии с поступающими командами или показаниями измерительных приборов. Вахтенный механик при ручном управлении или автоматическая система должны обеспечить точное выполнение этих операций. Поэтому важное значение имеют правильное описание или алгоритм процессов управления.
Алгоритм функционирования автоматической системы - это точное предписание, определяющее процесс преобразования исходной информации, поступающей от датчиков или с пульта управления, в управляющее воздействий на объект управления. Процесс получения и математического описания алгоритмов управления СЕУ называется алгоритмизацией. Процессы управления описывают с помощью логических уравнений.
В соответствии с методом аналитического описания алгоритмов А.А. Ляпунова весь процесс управления представляется в виде отдельных элементарных операций, которые записывают в строку и нумеруют в порядке их выполнения слева на право.
Если направление следования процесса управления зависит от результатов действия оператора в конкретных условиях, то есть от результатов переработки информации, получаемой от датчиков, то после оператора ставится логическое условие Рі, которое может принимать два значения: 1- при его выполнении, 0 - если оно не выполняется.
В первом случае процесс переходит к следующему оператору, во втором - к тому оператору, на который указывает стрелка с его порядковым номером, расположенным после логического условия у оператора, которому передается управление, также ставится стрелка с номером того логического условия, от которого произошел переход.
Для использования математического аппарата логических схем алгоритмов (ЛСА) при описании алгоритмов функционирования СЭУ вводятся следующие обозначения входных и выходных данных, операторов и логических условий:
обозначение операторов -
- SH и SK - операторы начала и конца процесса управления;
- Ai(x1, x2 … xn) - оператор арифметических и логических вычислений;
- Вi- оператор ввода информации от датчиков;
- Ni - оператор исполнительного органа;
- Сi - оператор выдачи управляющих воздействий;
- Di – оператор запоминания;
- Мi - оператор воздействия на средства представления информации (сигнализация)
- Ri - проверка результатов выполнения оператора;
- Qi - контроль времени.
Алгоритм функционирования можно представить в виде граф схемы, если принять следующую интерпретацию его функциональных элементов. Конечное множество преобразователей соответствует действию при управлении и обозначается в виде прямоугольников, внутри которых записаны операторы.
Конечное множество распознавателей определяет выбор направления следования процесса управления и обозначается ромбическими фигурами, внутри которых записаны логические условия. От преобразователей отходит стрелка к следующему элементу граф-схемы, от распознавателей - две стрелки, соответствующие выполнению «Да» и невыполнению «Нет» логического условия. Начало и конец алгоритма условно обозначают овалами.
Sн - начало алгоритма.
1. С1 (Авт, тп) - включение выключателя на ПУ в положение «автомат», включение тумблера «подогрев».
2. В1 — определение с помощью первичного преобразователя
Информации текущего значения давления пресной воды.
3. R1 - проверка результатов сравнения:
А) если давление п/в «нет» - срабатывает аварийная сигнализация М1, после чего включается ревун, который отключается кнопкой С2 отключение звука. После чего включением кнопки С1 - повторное включение переходим к началу п.2
Б) если давление п/в «да» - то переходим к пункту 4.
4. В2 - определение с помощью датчика температуры топлива
5. R2 - проверка результатов сравнения:
А) если температура топлива «нет» срабатывает предупредительная сигнализация М2, после чего включается автоматический клапан N1 -подкачки топлива и возврат к п.4
Б) если температура топлива «да» - переходим к п.6.
6. ВЗ определение с помощью датчика скорости 1 уставки (минимальные обороты).
7. RЗ - сравнение результатов, проверка:
А) если скорость 1 уставки «нет» срабатывает предупредительная (аварийная) сигнализация М2, после чего переходим к пункту 6
Б) если скорость 1 уставки «да» - переходим к п.8.
8. В4 - определение с помощью датчика скорости 3 уставки (разнос).
9. R4 - проверка результатов сравнения:
А) если скорость 3 уставки «нет» срабатывает аварийная сигнализация М1, после чего выключаем кнопкой СЗ звук ревуна, затем через выключатель повторного включения С1 возвращаемся на начало п.8
Б) если скорость 3 уставки «да» - переходим к п. 10.
10. В5 - определение с помощью датчика уровня масла.
11. R5 - проверка результатов сравнения:
А) если уровень масла «нет» - срабатывает аварийная сигнализация М1 после чего кнопкой С4 отключаем звук ревуна и возвращаемся на начало п. 10
Б) если уровень масла «да» - переходим к п. 12.
12. B6 - определение с помощью топливного клапана, который подает топливо и двигатель можно нагружать.
Sк - конец алгоритма.
3. ОПИСАНИЕ ОСОБЕННОСТЕЙ ЭЛЕМЕНТОВ ИЗ КОТОРЫХ СОСТОИТ САУ
Одной из основных особенностей полупроводников является резко выраженная зависимость их электропроводности от изменения температуры, как показано на рисунке.
При увеличении температуры на 10С электропроводимость полупроводника возрастает на 3-6%. Повышение температуры на 100% влечёт за собой увеличение электропроводности в 50 раз, что можно приравнять к разрыву электрической цепи, в которой он установлен. Это свойство полупроводников позволяет использовать их для измерения температур. Термометры сопротивления из полупроводников называют тернисторами. Благодаря малым размерам тернисторы очень быстро реагируют на изменение температуры. Это же свойство легко позволяет измерять с их помощью температуру низких параметров. Изменение сопротивления полупроводников в десяти раз больше, чем металлов, если они находятся в одинаковых температурных условиях. Это намного повышает точность измерения при помощи полупроводников.
Но не только измерение температуры можно осуществить при помощи тернисторов. Они могут служить ограничителями времени. Время, которое необходимо для достижения какой-либо величины тока при установленном напряжении, зависит от размеров теплового сопротивления, включенного в цепь, и от того, как оно охлаждается. Изменяя эти данные, можно добиться того, чтобы по нашему усмотрению это были доли секунды или же минуты. Тернисторы могут применятся для постепенного включения различных устройств автоматическим путём. Скорость включения может быть заранее предусмотрена.
Рис.1 Термометр сопротивления ТСП:
1 – гайка; 2 – шайба сальниковая; 3 – крышка; 4 –колодка контактная; 5 – замазка; 6 – арматура; - 7 – чувствительный элемент.
3.2 РЕЛЕ ДАВЛЕНИЯ РДК-3
возврат Срабатывание
Рис.2
Реле давления состоит из следующих частей: узла сильфона, передаточно-настроенного механизма и контактного устройства.
Кинематическая схема реле давления дана на рис.2.
Контролируемое или регулируемое давление воспринимается сильфоном (1). Сила давления, действующая на сильфон, уравновешена через шток сильфона (2) и рычаг (3) силой упругой деформации цилиндрической винтовой пружины (4), зацепленной за конец рычага. В другой конец пружины ввернута пробка (5) с резьбовым отверстием для ходового винта (6). Вращением ходового винта с помощью отвертки, удалив предварительно пробку (7), изменяют натяжение пружины, настраивая реле на нужное давление срабатывания. После настройки самопроизвольное перемещение ходового винта стопорится пробкой (7).
В контактном устройстве реле давления применен микропереключатель (8).
Реле давления работает следующим образом.
При повышении давления регулируемой или контролируемой среды выше установленной по шкале величины рычаг, под действием силы давления, поворачивая против часовой стрелке. При повороте правый конец рычага отойдет по кнопке микропереключателя, контакты которого автоматически переключаются.
При понижении давления рычаг, под действием силы пружины, начнет поворачиваться по часовой стрелке, и когда давление достигнет величины, равной установленной по шкале, рычаг своим правым концом нажмет на кнопку микропереключателя, производя обратное переключение его контактов.
3.3 Центробежное реле скорости
В энергетической установке судна частоту вращения вала двигателя измеряют механическими, гидравлическими, электрическими и электронными измерительными устройствами.