Смекни!
smekni.com

Электроснабжение железнодорожного предприятия (применение аутсорсинга в электроснабжении нетяговых потребителей) (стр. 6 из 12)

При построении сети необходимо сопоставить как материальные затраты на устройство высоковольтной или низковольтной сети, так и надёжность электроснабжения и заданное качество электроэнергии у потребителей. Низковольтные кабельные (а особенно воздушные) линии длиной более 150…200 м значительно увеличивают входное сопротивление питающей сети у потребителей. Это приводит к потерям электроэнергии, снижению напряжения в конце линии и уменьшению надёжности срабатывания защит от сверхтока /3/.

Намечаются места подстанций и производится распределение нагрузок между ними с учётом тяготеющих к ним разбросанных нагрузок При определении центров распределения нагрузок необходимо учесть информацию о местах скопления нагрузок, места возможного расположения источников питания, наличие существующих высоковольтных линий, величину и характер нагрузок. Возможные центры распределения нагрузок должны быть максимально удалены друг от друга и приближены к наиболее крупным электроприёмникам.

При определении центров нагрузок низковольтной сети на схематический генплан предприятия (цеха) наносится картограмма нагрузок /2/. План предприятия необходимо поместить в прямоугольную систему координат с осями Х и Y. При этом каждый электроприёмник (или распределительный шкаф) с нагрузкой Pi, будет иметь координаты Xi, Yi. При таком способе можно по аналогии с центром тяжести материальных точек определить центр электрических нагрузок группы электроприемников или всего предприятия, координаты которого (X0, Y0) могут определиться по формуле

,
, [1.12]

гдеPi – мощность электроприёмника, кВт;

Xi, Yi - координаты электроприёмника, м.

Далее центры нагрузок групп ЭП определяются по формуле [1.12] и в масштабе цеха, разбивая электроприёмники на группы, можно определить координаты возможных центров групп и принять решение о местах установки распределительных шкафов. На основании выбора места расположения КТП и конфигурации кратчайшей сети выбирается трасса и схема прокладки кабелей. Подстанция и цеховые силовые шкафы должны быть приближены к колоннам и стенам цеха как естественным опорам для выходящих и подходящих к ним участков сети.

Например, по формуле [1.12] определим координаты центра тяжести группы из девяти ЭП, питаемой от распределительного шкафа СП-11. Координаты ЭП по осям Х и Y примем в метрах. Схема предприятия с координатами ЭП приведена на рисунке 1.3. Координаты группы из четырёх электродомкратов можно принять в геометрическом центре их установки.

=

= 73,2 м.

=

= 36,8 м.

В некоторых случаях возле определённого центра нагрузок оказывается движущееся оборудование, технологический проход и т.д. в таком случае силовой пункт необходимо располагать на ближайшем удобном участке площади депо. Для выбора места расположения силового шкафа питания группы нагрузок СП-11 выберем точку с координатами ХСП-11 = 73,0 м и YСП-11 = 37,0 м возле стены здания в помещении цеха подъёмного ремонта. Центр нагрузок оказывается удалён от силового пункта СП-11 на 1,0 м. Подобным образом определим координаты других групп ЭП и распределительных шкафов депо и данные занесём в таблицу 1.3.

С учётом расчётов выполненными студенткой Свиридовой Е.И. по максимальной мощности групп электроприёмников и определим координаты центра тяжести всех нагрузок депо, который оказался в точке с координатами:

ХД = 50,5 м и YД =37,5 м.

Для уменьшения потерь электроэнергии в низковольтной сети питающая подстанция должна быть максимально приближена к центру нагрузок, однако для удешевления проекта при реконструкции системы электроснабжения сохраним существующую подстанцию в отдельном кирпичном строении и расположенную на расстоянии 0,1 км от ввода низковольтных кабелей в помещения депо со стороны кернового отделения. Следовательно, место расположения ТП Депо смещено от центра нагрузок депо на 138,0 м.

Таблица 1.3 – Координаты центра нагрузок и места установки силовых пунктов групп электроприёмников, в метрах

Координаты СП-9 СП-10 СП-11 СП-12 СП-13 СП-14
ХЦН 13,8 45,5 73,2 88,0 17,4 49,7
YЦН 31,5 32,4 36,8 26,4 19,0 16,5
ХСП 16,0 38,0 73,0 94,6 15,2 52,0
YСП 17,5 17,5 37,0 31,2 16.5 17,5

Схема магистральной низковольтной сети приведена на рисунке 1.3.

Ввод питающей сети на ТП Депо выполнен на напряжении 6 кВ. В зависимости от типа линии и класса напряжения сечение проводников питающей сети выбирается в соответствие с ПУЭ /4/ по допустимому длительному току и проверяется по:

- динамическому и термическому действию токов короткого замыкания;

- допустимой экономической плотности тока по формуле

, [1.13]

где SПР – площадь поперечного сечения фазной жилы проводника, мм2;

IM – ток в час максимума, А;

JЭК – нормированное значение экономической плотности тока, А/мм2.

Поведём выбор проводников высоковольтных кабельных линий питающих ТП Депо. Максимальная мощность нагрузки депо согласно данных расчёта в таблице 1.2 составляет: SМ = 1083,7 кВ·А. Максимальный ток при напряжении сети 0,4 кВ составляет: IM = 1647 А. по формуле [1.11] для питающей сети с напряжением 6 кВ – IM = 104 А.

При односменной работе предприятия и числе использования максимума нагрузки до 3000 час. в год экономическая плотность тока для высоковольтных проводов с изоляцией из полиэтилена и алюминиевыми жилами составляет:

JЭК = 1,6 А/мм2 /4/.

Следовательно, сечение провода кабельной линии питания предприятия должно быть:

SКЛ ≥ 104,0/1,6 ≥ 65,0 мм2.

Сечение жил кабеля основного питания марки ААШВ 3×120, трёхжильного алюминиевого кабеля в алюминиевой оболочке составляет 120 мм2, а кабеля для резервного питания марки ААБ 3×70, трёхжильного алюминиевого кабеля в свинцовой оболочке и с бумажной изоляцией - 70 мм2. Следовательно, существующие высоковольтные кабели позволяют выполнить электроснабжение ТП Депо в соответствие с действующими нормативами. При этом по кабелю основного питания имеется запас для транзита электроэнергии на КТП питания дистанции пути.

Сечения проводников высоковольтной сети и питающих группы низковольтных электроприемников, выбираем по длительно – допустимому току /4/ исходя из условия

IРАСЧ ≤ IДЛ. ДОП., [1.14]

где IРАСЧ – расчетный ток, А;

IДЛ. ДОП – длительно – допустимый ток по нагреву для проводника, А.

Рисунок 1.2 – Схема деповской понижающей подстанции

Рисунок 1.3 – Схема деповской низковольтной распределительной сети

Например, в вынужденных режимах электроснабжения кабель марки ААБ 3×70 позволяет пропускать длительно-допустимый ток до IДЛ. ДОП = 175 А.

Низковольтные сети выполняются по системе TN-C-S четырёхжильными кабелями, проложенными в коробах и кабельных каналах. При прокладке нескольких кабелей в расчёт вводятся коэффициенты согласно ПУЭ /4/. Например, для четырёхжильных кабелей вводится коэффициент 0,92 по сравнению с длительно допустимым током для трёхжильных.

Например, максимальный ток СП-11 составляет IМ = 61 А. Следовательно, при прокладке по помещениям цехов в воздухе на желобах и по кабельной каналам можно выбрать кабель типа АВВГ 4×25 с алюминиевыми жилами и длительно допустимым током 69 А.

Данные по магистральной питающей сети приведены в таблице 1.4.

Таблица 1.4 - Кабели питающей низковольтной сети

Путь питающей сети Ток группы ЭП, IМ, А Тип кабеля Сечение кабеля, мм2 Допустимый ток кабеля, IДЛ. ДОП, А
ТП – СП-9 98 АВВГ 3×50 + 1×25 101
ТП – СП 10 88 АВВГ 4×16 55
ТП – СП-11 61 АВВГ 4×25 69
ТП – СП-12 114 АВВГ 3×70 + 1×50 128
ТП – СП-13 61 АВВГ 4×25 69
ТП – СП-14 94 АВВГ 3×50 + 1×25 101

Распределительная низковольтная сеть состоит из присоединений отдельных электроприемников к силовым пунктам (СП).

Она выполняется в виде электропроводок в пластмассовых или тонкостенных водо– газопроводных стальных трубах изолированными одножильными проводами или четырёхжильными кабелями /3/.

Расчетные токи для различных электроприемников определяются в зависимости от типа оборудования.

Для сварочных трансформаторов