Смекни!
smekni.com

Применение замкнутых систем водопользования на промывочно-пропарочных станциях сети железных дорог (стр. 1 из 4)

Курсовой проект

"Ресурсосберегающие технологии"

Исходные данные

Контур охлаждения компрессоров

Основные параметры контура охлаждения компрессора
Подача охлаждаемой воды, м3/сут 62
Тmax0C на выходе из компрессора 47
Тmax0C на входе в компрессор 26
Коэффициент капельного уноса 0,19
Концентрация циркулирующей воды, г/м3 взвеси 44
Для взвеси в осадке 0,5
Концентрация масла нефтепродукта в охлаждающей воде, г/м3 38
Доля нефтепродукта во всплывшем слое 0,4
Коэффициент водоохладителя 0,13

Оборотный контур щелочного моющего раствора

Основные параметры оборотного контура
Производительность насоса, м3 3,2
Время работы насоса, ч 4,5
Концентрация взвеси, г/м3 127
Доля твёрдой фазы в осадке 0,4
Доля нефтепродуктов в смеси 0,6
Содержание водяных паров, г/м3 85
Время работы вентилятора, ч 4,5
Производительность вентилятора, м3 720
Коэффициент потери от уноса и разбрызгивания, % 0,4
Концентрация нефтепродуктов, г/м3 105

Оборотный контур обмывки мотор-вагонных секций (вагонов)

Параметры оборотного контура
Количество обмываемых вагонов в сутки, N, шт. 127
Объём воды в системе контура, W, м3 88
Концентрация взвеси в отработанной воде, С2, г/м3 330
Концентрация нефтепродуктов в отработанной воде, С4, г/м3 91
Начальная температура, t1, 0C 85
Конечная температура, t2, 0C 52
Доля твёрдых веществ фазы в осадке, α 0,4
Доля нефтепродуктов в отводимой смеси, β 0,8
Доля непрореагированного ТМС, α1 0,5
Расход ТМС, V2, л/вагон 4,6
Концентрация ТМС, С6, г/л 43
Коэффициент возврата ТМС, К3 0,5
Доля твёрдой фазы в осадке в сборном баке моющего раствора, α2 0,5
Доля всплывших нефтепродуктов в собранном моющем растворе, γ 0,37
Концентрация взвешенных веществ в собранном моющем растворе, С7, г/м3 113
Концентрация нефтепродуктов в собранном моющем растворе, С8, г/м3 116

Введение

Внедрение технологических систем оборотного водопользования на предприятиях железнодорожного транспорта является основным направлением как при решении вопросов рационального использования водных ресурсов, так и защиты окружающей среды и водоёмов от загрязнения.

Всероссийским институтом железнодорожного транспорта разработаны требования к качеству оборотной воды с учётом особенностей технологических процессов транспортных предприятий:

– сточная вода после промежуточной очистки может быть использована в том же технологическом процессе;

– качество воды в пределах установленного уровня должно обеспечиваться известными методами очистки воды применительно к каждому технологическому процессу.

– качество очищенной воды не должно ухудшать параметры технологического процесса;

– качество очищенной воды должно обеспечивать создание бессточных систем, по возможности без дополнительного применения чистой водопроводной воды, за исключением пополнения естественной убыли и периодической смены воды в системе.

В целом применение замкнутых систем водопользования на промывочно-пропарочных станциях сети железных дорог позволяет экономить 2 млн. м3 воды в год. Стоимость обработки цистерн по замкнутой технологии по сравнению со стоимостью сброса воды на очистные сооружения нефтеперерабатывающего завода снижается до 25%, а по сравнению со стоимостью сброса в открытые водоёмы при учёте предотвращённого ущерба – на 30% и более. На шпалопропиточном заводе внедрение бессточной системы водопользования обеспечивает экономию воды около 50 тыс. м3/год, а внедрение аналогичной системы при обмывке пассажирских вагонов – до 100 тыс. м3/год на один пункт.

1. Расчёт оборотного контура охлаждения компрессорных установок

Схема оборотного использования охлаждающей воды в компрессорных установках включает водоохладитель с насосом охлаждённой воды, подающий насос и сливной бак (рис. 1).

При работе компрессора нагретая вода из сливного бака насосом подаётся в водоохладитель, откуда после охлаждения другим насосомвозвращается в компрессор. Сливной бак является расширительной ёмкостью для обеспечения нормальной работы системы. Насосы подбираются исходя из необходимой производительности и создания напора 25–30 мм вод. ст.

В качестве водоохладителя испарительного типа используются различные типы теплообменников, выбор которых определяется климатическими и производственными условиями. Охладители брызгательный бассейн или малогабаритные градирни (открытые или вентиляционные).

Рис. 1. Схема оборотного использования воды охлаждения компрессоров:

1 – компрессор (струйный); 2 – сливной бак для расширения нагретой воды; 3 – подающий насос; 4 – место установки теплообменника (можно установить для вторичного использования тепла, тогда вода после него должна иметь более низкую температуру, чем t2, следовательно, уменьшается время охлаждения и величина испарения воды в водоохладителе); 5 – водоохладитель (брызгательный бассейн, тогда величина капельного уноса велика или миниградирня); 6 – насос; 7 – сливной бак (введение подпиточного объема воды); W – объем циркулирующей охлаждающей воды; Р – слив с целью уменьшения концентрации солей; И – объем испаряемой воды в водоохладителе; У – капельный унос; t1 – температура воды на входе в компрессор; t2 – температура воды на выходе из компрессора; а – подача газа (воздуха) в компрессор; в-выход сжатого газа (воздуха) из компрессора; с – подача холодной воды в теплообменник; д – выход нагретой воды из теплообменника; е – подпитка.


1. Определение потери воды от капельного уноса.

,

где W – объём охлаждаемой воды, м3/сут.;

К1 – коэффициент капельного уноса водоохладителя.

2. Определение потери воды от испарения.

,

где W – объём охлаждаемой воды, м3/ сут;

К2 – коэффициент водоохладителя;

t2 – максимальная температура воды на выходе из компрессора, оС;

t1 – максимальная температура воды на входе в компрессор, оС.

3. Определение количества осадка, образующегося в баках контура, кг/сут.


,

где C1 – концентрация взвеси в циркулирующей воде контура, г/м3;

C01 – предельно допустимая концентрация взвешенных веществ в охлаждённой воде,C01 = 30г/м3;

α – доля взвеси в осадке;

1000 – коэффициент перевода в кг.

4. Определение количества, воды теряемое с осадком, кг/сут.

ОС = Р1·К3,

где k3 – расчётная доля воды в осадке, К3 = 1 – α.

5. Определение количества маслонефтепродуктов, всплывших в баках контура, кг/сут.

,

где С2 – концентрация маслонефтепродуктов в охлаждённой воде контура, г/м3;

C02 – предельно допустимая концентрация маслонефтепродуктов в охлаждённой воде, С02 = 20г/м3;

β – расчётная доля нефтепродуктов во всплывшем слое.

6. Определение количества воды, теряемое с маслонефтепродуктами, кг/сут.

НП = Р2·К4,

где К4 – доля воды, теряемая с маслонефтепродуктами, К4 = 1 – β.

7. Определение солесодержания в оборотном контуре.

Солесодержание в контуре (Сх) определяется на основе водно-солевой баланса.

При этомСх определяется с учётом добавления питьевой воды с концентрацией солей Сдоб, которая может изменяться от 300 до 1000 мг/л, при продувке П = 0 и Qдоп = 0. При этом производится расчёт при трёх значениях с солесодержанием в добавочной воде равном соответственно 300, 500 и 1000 мг/л.

(У+ОС+НП+П)·Сх=(И+У+ОС+НП+П) · Cдоб + Qдоп (1)

где У – потери воды от капельного уноса, м3/ сут;

ОС – потери воды с удалённым осадком, м3/ сут;

НП – потери воды с выделенными нефтепродуктами, м3/ сут;

И – потери воды от испарения, м3/ сут;

Cдоб – солесодержание в добавочной воде, г/м3, максимальная Сдоб=1000 г./м3,

Qдоп - количество поступивших в воду контура солей, г/сут.

Сдоб.=300г/м3

Сдоб=500 г./м3