Содержание
Введение
1. Исходные данные
2. Материалы
3. Конструкция и характеристика резинометаллического шарнира
4. Определение статической нагрузки на одно колесо подвески
5. Влияние резинометаллических шарниров на жесткость рычажной подвески
6. Определение силы затяжки и момента завинчивания гайки
7. Проверочный расчет сайлент-блоков на прочность
Заключение
Список используемых источников
Введение
Значительное увеличение долговечности упругих элементов неизбежно выдвигает вопрос оповышении долговечности всего узла подвески в целом и в первую очередь ее подвижных соединений, подверженных значительному износу.
Так как упругие элементы не нуждаются в смазке, желательно устранить смазку и у других частей подвески и, в частности, шарнирных соединений. Поскольку создание качественного шарнира, сочетающего большую грузоподъемность с достаточной подвижностью и высокой долговечностью, имеет существенное значение при проектировании направляющего устройства.
В конструкциях современных подвесок широкое распространение получили следующие основные типы упругих шарниров: резино-металлические втулки, резино-металлические шарниры и шарниры с пластмассовыми покрытиями.
При установке таких шарниров в процессе эксплуатации не требуется смазки, технического обслуживания и ремонта. Резиновые детали сочленений подвески значительно снижают вибрации, передаваемые на кузов автомобиля, что имеет большое значение для конструкций автомобилей с несущим кузовом. По данным фирмы Гендриксон, резиновые шарниры, применяемые в сочленениях пальцев подвески, снижают вибрации кузова на 50 %. Упругие шарниры способствуют гашению колебаний подвески.
Наряду с названными выше шарнирными соединениями в современных подвесках применяются соединения обычных типов. Однако применение таких соединений непрерывно сокращается.
В данном курсовом проекте мы заменим резьбовые соединения рычагов подвески автомобиля ГАЗ-24 на резинометаллические шарниры и рассмотрим их влияние на жесткость подвески.
1. Исходные данные
В = 2,8 м. - база подвески;
1= 0,4 м.- длина нижнего рычага;
2= 0,24 м.- длина верхнего рычага;
С = 44600 Н/м - жесткость подвески;
m1 = 855 кг.- масса автомобиля приходящаяся на переднюю ось.
2. Материалы
Втулки сайлент-блоков изготавливаются из стали марки 7-НО-68-1 ГОСТ 252-53.Контактирующие с резиной поверхности металла должны обладать высокой чистотой поверхности. Марка резины 7-6-163 ГОСТ 25105-82. Для улучшения сцепления между резиной и металлом и создания в резине предварительного натяжения шарнир вулканизируют в пресс-форме.
Стойку отливают из чугуна марки СЧ12.
3. Конструкция и характеристика резинометаллического шарнира
Развитием конструкции резинометаллических втулок являются резинометаллические шарниры. Цилиндрические шарниры представляют собой подшипниковый узел (рисунок 1), наружная и внутренняя посадочные поверхности, которого образованы металлическими втулками; между втулками плотно запрессован резиновый цилиндр.
Между резиной и металлом создается давление около 30 кг/см², что при коэффициенте сцепления 0,7 обеспечивает передачу напряжений сдвига до 20 кг/см². Внутреннюю обойму можно повернуть по отношению к наружной на угол до 40° без нарушения сцепления. Шарниры этого типа обладают большой радиальной и осевой жесткостью и допускают лишь незначительные углы перекоса.
Рисунок 1- Резинометаллический цилиндрический шарнир.
Опыт изготовления таких шарниров показал, что контактирующие с резиной поверхности металла должны обладать высокой чистотой поверхности; шероховатые и рифленые поверхности оказываются менее пригодными. Иногда для улучшения сцепления между резиной и металлом и создания в резине предварительного напряжения шарнир вулканизируют в пресс-форме.
4. Определение статической нагрузки на одно колесо подвески
Определим нагрузку на переднюю ось:
G1= m1∙g(1)
G1= 855∙9,81 = 8387,55 Н.
Нагрузка, приходящаяся на одно колесо, будет определяться по формуле:
G = G1/2 (2)
G = 8387,55/2 = 4193,77 Н.
5. Влияние резинометаллических шарниров на жесткость рычажной подвески
В общем случае подвеска может иметь резинометаллические шарниры во всех четырех соединениях (в точках A, B, D и E). Схема такой подвески изображена на рисунке 2.
Рисунок 2- Схема подвески с резинометаллическими шарнирами
Жесткость резинометаллических шарниров, отнесенная к колесу автомобиля, может быть определена из следующих соображений. Если обозначить через Тк ту часть полной вертикальной силы на колесе, которая расходуется на деформацию резиновых шарниров, то при перемещении колеса в вертикальном положении на величину dsк, баланс работы может быть выражен уравнением:
Tк∙dsк = Ма∙dφа + Мb∙dφb+ Мd∙dφd + Мe∙dφe(3)
Дифференцируя уравнение (3), получим уравнение жесткости подвески:
(4)где Ma, Мb, Мd, Мe- скручивающие моменты, действующие соответственно на шарниры А, В, D, Е;
φа, φb, φd, φe- углы закручивания резиновых шарниров, расположенных соответственно в точках А, В, D и Е.
Жесткость резинового шарнира (при закручивании) может быть определена из уравнения:
, (5)где G – модуль упругости резины второго рода;
G = 35·10³ –
Н/м² при твердости резины (по Шору) 30- 60;bz – длина резиновой втулки;
Dн и Dвн – соответственно наружный и внутренний диаметры резиновой втулки.
Определим жесткость шарниров A и D:
Так как размеры резинометаллических шарниров одинаковы можно сделать вывод:
Н·мВеличину
для любого шарнира подвески целесообразнее всего определять из выражения: , (6)где Pхш – сила, создающая момент, скручивающий шарнир;
- плечо приложения силы Рхш (Рис.2).Расчетные формулы для определения величины
для вариантов А, В, D, и Е приведены в таблице 1.Таблица 1 - Формулы для определения деформации резинометаллического шарнира.
Шарниры | А | В | D | E |
Отношение сил
, , , определяется построением соответствующих силовых треугольников.Для определения силы Ра откладываем в определенном масштабе вертикально расположенную силу Тк. Через ее верхний и нижний концы проводим линии, соответственно параллельные силе Ра и реакции Qн, действующей вдоль нижнего рычага. Сила Ра проходя через шарнир В, создает на плече la момент, скручивающий резино-металлический шарнир А. Силовой треугольник расположен на рисунке 3.
Рисунок 3- Силовой треугольник для определения силы Ра.
Из силового треугольника видно:
Так как Тк = G = 4193,77 Н., то сила скручивающая шарнир А будет вычисляться по формуле:
Ра= G/0,61 (7)
Ра= 4193,77/0,61= 6875 Н.
Для определения силы Рd строим аналогичный силовой треугольник. Через верхний и нижний концы силы Тк проводим соответственно линии , параллельные оси верхнего рычага и силе Рd, которая, проходя через шарнир Е на плече ld создает момент , скручивающий резинометаллический шарнир D.
Рисунок 4- Силовой треугольник для определения силы Рd.
Из силового треугольника видно: