Смекни!
smekni.com

Анализ конструкции и методика расчета автомобиля ВАЗ-2108 (стр. 6 из 11)

, [σсм] = 15…20 МПа

где dш.н, dш.вн — наружный и внутренний диаметры шлицевого конца вала; nш— число шлицев; lш — длина шлица.

Напряжение среза (считая, что шлицы срезаются у основания по диаметру dш.вн; bш — ширина шлица)

[τср] =25...30 МПа

Осевые нагрузки в карданной передаче возникают в шлицевом соединении при перемещениях, связанных с изменением расстояния между шарнирами, например при колебаниях кузова на рессорах. Исследования показали, что даже при наличии большого количества смазочного материала последний не удерживается на поверхности трения и перемещение в шлицевом соединении происходит в условиях граничного трения. При этом коэффициент трения μ = 0,2, а иногда (при появлении задиров) μ = 0,4. При передаче большого крутящего момента в шлицевом соединении происходит защемление, и карданный вал, по существу, передает тяговое усилие. При этом двигатель, установленный на упругих подушках, продольно смещается в некоторых автомобилях на 10 мм, а иногда и больше. Большие осевые силы (в грузовых автомобилях 20...30 кН) независимо от того, смазано шлицевое соединение или нет, создают дополнительные нагрузки на карданные шарниры, промежуточную опору карданной передачи, а также на подшипники коробки передач и главной передачи. Повышенное трение в шлицевом соединении приводит к быстрому изнашиванию шлицев и к нарушению в связи с этим балансировки карданной передачи.

Осевые силы являются одной из главных причин того, что долговечность карданных передач в 2...3 раза ниже долговечности основных агрегатов автомобиля. Осевая сила


Сечение трубы карданного вала определяют исходя из напряжения на кручение:

τт=16ТmахDн/π(D4н–D4вн),

где τТ — предел текучести материала вала.

2. Ходовая часть шасси автомобиля

2.1 Подвески автомобиля

Рисунок 14. Кинематические схемы подвесок автомобиля

а — зависимой; б — однорычажной независимой; в — двухрычажной независимой с рычагами равной длины; г — двухрычажной независимой с рычагами разной длины; д — независимой рачажно-телескопической (ВАЗ-2108); е — независимой двухрычажной с торсионом; ж — независимой с продольным качанием.


Передняя подвеска автомобиля ВАЗ-2108

1 - шаровая опора; 2 - ступица; 3 - тормозной диск; 4 - защитный кожух; 5 - поворотный рычаг; 6 - нижняя опорная чашка; 7 - пружина подвески; 8 - защитный кожух; 9 - буфер сжатия; 10 - верхняя опорная чашка; 11 - резиновый элемент верхней опоры; 12 - защитный колпак; 13 - подшипник верхней опоры; 14 - шток; 15 - опора буфера сжатия; 16 - телескопическая стойка; 17 - гайка; 18 - эксцентриковый болт; 19 - поворотный кулак; 20 - вал привода переднего колеса; 21 - защитный чехол шарнира; 22 - наружный шарнир вала; 23 - нижний рычаг; а - стойка с полым поворотным рычагом; б - стойка с цельнометаллическим поворотным рычагом.

Задняя подвеска автомобиля ВАЗ-2108

1. Ступица заднего колеса; 2. Рычаг задней подвески; 3. Кронштейн креплений рычага подвески; 4. Резиновая втулка шарнира рычага; 5. Распорная втулка шарнира рычага; 6. Болт крепления рычага задней подвески; 7. Кронштейн кузова; 8. Опорная шайба крепления штока амортизатора; 9. Верхняя опора пружины подвески; 10. Распорная втулка; 11. Изолирующая прокладка пружины подвески; 12. Пружина задней подвески; 13. Подушки крепления штока амортизатора; 14. Буфер хода сжатия; 15. Шток амортизатора; 16. Защитный кожух амортизатора; 17. Нижняя опорная чашка пружины подвески; 18. Амортизатор; 19. Соединитель рычагов; 20. Ось ступицы: 21. Колпак; 22. Гайка крепления ступицы колеса; 23. Уплотнительное кольцо: 24. Шайба подшипника; 25. Подшипник ступицы; 26. Щит тормоза; 27. Стопорное кольцо; 28. Грязеотражатель: 29. Фланец рычага подвески; 30. Втулка амортизатора; 31. Кронштейн рычага с проушиной для крепления амортизатора; 32. Резинометаллический шарнир рычага подвески.


Анализ и оценка элементов конструкции подвески автомобиля

Рычажно-телескопическая подвеска передних колес автомобиля —качающаяся свеча (рис. 17)обеспечивает незначительные изменения колеи, развала и схождения колес, при этом замедляется изнашивание шин, улучшается устойчивость автомобиля. Подвеска имеет один поперечный рычаг внизу, ее основной элемент — амортизаторная стойка, имеющая верхнее шарнирное крепление под крылом, что обеспечивает большое плечо между опорами стойки. В верхней опоре имеется подшипник, необходимый для исключения закручивания пружины, что могло бы вызвать стабилизирующий момент и дополнительные изгибающие нагрузки. Малые размеры и масса, большое расстояние по высоте между опорами, большой ход также относятся к преимуществам этой подвески. Конструктивные трудности обусловлены нагружением крыла в точке крепления верхней опоры.

Рисунок 17. Расчетная схема рычажно-телескопической подвески

На рисунке 17 показаны силы, действующие в рычажно-телескопической подвеске. По линии еА действует сила Рв, которая может быть разложена на две составляющие силы: Рпр, действующую на пружины, и Qпр, перпендикулярную оси стойки, приложенную в точке А к опоре стойки. Под действием этой силы повышается трение штока поршня в направляющей стойке. В результате ухудшается реагирование подвески на мелкие дорожные неровности.

При совмещении осевой линии подвески с линией еА силы Рв и Рпр совпадут, а поперечная сила Qпр исчезнет. Для этой цели пружины располагают под углом или смещают пружину в сторону колеса.

Зависимая подвеска отличаются тем, что вертикальное перемещение колеса сопровождается изменением угла λ,что вызывает гироскопический эффект, возбуждающий колебания колеса относительно шкворня.

Нагрузки на подвеску автомобиля

Нагрузки на упругий элемент:

Зависимая подвеска (рис. 18, а). Нагрузка зависит от реакции Rzна колесо и веса неподрессоренных масс Gн.м:

PP = Rz— 0,5 Gн.м

Рисунок 18. Расчетная схема для определения нагрузок на упругие элементы подвески

При этом прогиб упругого элемента равен перемещению колеса относительно кузова fр = fк.

Независимая подвеска.

Для двухрычажной подвески (рис. 19, а)нагрузка на упругий элемент

Pp= (RzG'к) l / a,

где G'к — вес колеса и направляющего устройства.

А прогиб fp = fк a / l.

Рисунок 19. Расчетная схема для определения нагрузок на упругие элементы подвески

Пружины в качестве основных упругих элементов широко применяются в подвесках легковых машин повышенной проходимости и в качестве вспомогательных элементов, например ограничителей или корректирующих устройств, на других машинах. В первом случае используются цилиндрические пружины, витые из прутка круглого или прямоугольного сечения; характеристика их линейна. Для ограничителей хода применяются конические пружины.

Усилие, сжимающее пружину, определяется кинематической схемой подвески.

Рисунок 20. Расчетная схема подвески с цилиндрической пружиной

Pn = (Piai,)/bi


Усилие Рn может быть выражено также следующим образом:

Pn = λּcn,

Pnmax = λmaxּcn,

где λmах— максимальная деформация пружины; сn — жесткость пружины.

где τmах — максимальное напряжение в пружине; d— диаметр прутка; D— средний диаметр пружины; τдоп — допускаемое напряжение; τдоп = 600-700 МПа.

2.2 Колёса и шины автомобиля

Колесный движитель представляет собой устройство, преобразующее работу двигателя в поступательное движение машины. Он состоит из трех основных частей: шины, обода и ступицы.

Анализ и оценка конструкции автомобильных шин и колес

Рисунок 21 - Радиальный разрез покрышки


1— каркас; 2 — брекер; 3 — протектор; 4 — боковина; 5 — борт; 6 — носок борта; 7 — основание борта; 8 — пятка борта; 9 — бортовая лента; 10 — бортовая проволока; 11 — обертка; 12 — наполнительный шнур; H — высота профиля покрышки; H1 — расстояние от основания до горизонтальной осевой линии профиля; H2 — расстояние от горизонтальной оси до экватора; В — ширина профиля; B6— корона; Rрадиус кривизны протектора; D— наружный диаметр шины; d— посадочный диаметр шины; h— стрела дуги протектора; С — ширина раствора бортов; а — ширина борта.

2.3 Полуоси, балка и поворотный кулак автомобиля