Смекни!
smekni.com

Анализ конструкции и методика расчета автомобиля ВАЗ-2108 (стр. 8 из 11)

При динамическом нагружении

вертикальная нагрузка:

Rz1Kд = Rz2Kд;

горизонтальная нагрузка:

Rz1Kд φ = Rz2Kд φ;

скручивающая нагрузка:

Ртrк= Мкр = Rz1Kд φrк = Rz2Kд φrк.

При расчете полуразгруженной полуоси плечо изгиба bопределяется как расстояние между плоскостями, проходящими через центр опорной площадки колеса и через центр опорного подшипника.

Полностью разгруженные и разгруженные на три четверти полуоси рассчитывают только на кручение и определяют их жесткость.

Касательное напряжение кручения:

τ = Ртrк/ 0,2d3; Мкр = Ртrк.

Угол закручивания полуоси:

θ = (180 / π)(Mкрl / GJкр);

здесь момент инерции Jкр = πd4/32, модуль сдвига G = 85 ГПа. Угол закручивания обычно ограничивается θ = 9...15° на 1 м длины полуоси. Меньшее значение угла закручивания характеризует повышенную жесткость, большее значение — склонность к колебаниям и резонансным явлениям.

Полуразгруженная полуось разрушается в опасном сечении под подшипником. Здесь полуось должна быть утолщена. Разгруженная полуось разрушается в месте начала шлицев. Рекомендуется осадка конца полуоси под шлицевой конец для увеличения диаметра опасного сечения.

2.4 Несущая система автомобиля

Анализ и оценка конструкции несущей системы автомобиля

В США большее распространение получили рамные конструкции, что дает возможность варьировать модели кузовов (включая открытые модификации) и обеспечить лучшую изоляцию кузова от вибрационных нагрузок. В европейских странах наиболее распространены безрамные силовые схемы, обеспечивающие наименьшую массу.

К пассажирским кузовам основные требования сводятся к регламентации планировочных размеров, рабочего места водителя, комфортабельности.

Кузова легковых автомобилей классифицируют на каркасные, скелетные и оболочковые.

Каркасные кузова выполняются из относительно массивных закрытых или открытых профилей, воспринимающих нагрузки. Облицовка из стали, дюралюминия или из стеклопластика формирует объем кузова и повышает его жесткость.

Скелетные кузова имеют каркас, образованный из профилей облегченного типа, приваренных к облицовке.

Оболочковые кузова (рис. 25) выполняются из крупных штампованных деталей, наружных и внутренних панелей, соединенных точечной сваркой в замкнутую силовую систему преимущественно из стального листа толщиной 0,6...0,8 мм. Кузова такого типа наиболее распространены, так как обладают технологическими, преимуществами (автоматическая сварка панелей может выполняться на конвейере).


Рисунок 25. Оболочковый кузов легкового автомобиля

Нагрузочные режимы кузовов

На неподвижный автомобиль действуют статические нагрузки от собственной массы и полезной нагрузки. При движении автомобиль испытывает динамические нагрузки от неровностей дороги, от разгона и торможения, при поворотах и от веса агрегатов. Работоспособность кузова характеризуется его прочностью и жесткостью под действием динамических нагрузок.

Кузов подвержен изгибу и кручению: симметричная нагрузка вызывает изгиб, кососимметричная нагрузка — кручение в вертикальной и горизонтальной плоскостях. Статическая нагрузка, умноженная на ускорение, определяет динамическую нагрузку, так же как при нагружении рамы.

Пространственная система кузова трудно поддается расчету на сложные напряжения изгиба и кручения. Поэтому кузов условно расчленяют на отдельные элементы и рассчитывают их на изгиб и кручение раздельно.

Наиболее достоверную информацию о напряженном состоянии кузова получают методом тензометрирования как в стендовых, так и в дорожных условиях.

Прочность оценивают по пределу текучести материалов. При одностороннем растяжении или сжатии допускаемое напряжение:

σ = σs/ Кбез.


Условия прочности при изгибе:

σст+ σдσи или σстσsКбез (1 — Кд)

при кручении σкσsКбез (1 + 1 / Кд).

При наличии сложного напряженного состояния эквивалентное напряжение

.

Удельная крутильная жесткость характеризует сопротивление кузова закручиванию и представляет собой отношение момента к вызванному углу закручивания на длине базы автомобиля, умноженному на размер базы, для легковых автомобилей она составляет 130...300 Н∙м2/°.

Изгиб кузова в вертикальной плоскости характеризует удельная изгибная жесткость — отношение нагрузки к вызванному прогибу, умноженному на размер базы в третьей степени (прогиб балки пропорционален третьей степени длины пролета); для легковых автомобилей она составляет 850...2200 Н∙м3/мм.

Наиболее полное приближение к результатам натурных испытаний несущей системы дает расчет кузова и рамы с использованием метода конечных элементов. Этот метод расчета многократно статически неопределимых конструкций основан на совместном рассмотрении напряженного состояния системы небольших элементов конечного размера. Метод конечных элементов заключается в том, что реальная конструкция заменяется структурной моделью, состоящей из простейших элементов, таких, как стержни, пластины и др. объемные элементы с известными упругими свойствами. Исходя из того, что упругие свойства отдельных элементов известны, можно определить свойства всей системы в целом при определенных нагрузках. Процесс расчета осуществляется в несколько этапов. На этапе предварительной подготовки конструкцию разбивают на простые элементы. Например, разбиение кузова производят на одной половине по оси симметрии примерно на 200—500 элементов. На этапе получения предварительной модели определяют координаты узловых точек. Эта работа занимает по времени несколько недель или даже месяцев. Затем проводится расчет с использованием ЭВМ по специально разработанным программам. На рисунке 38 показана для примера структурная модель кузова легкового автомобиля, построенная в результате подготовительных этапов с помощью графопостроителя.

Следует помнить, что структурная модель рассмотрена без учета различных мелких элементов (отверстий, гофр, сварки и др.), которые могут оказать заметное влияние на напряженное состояние кузова и нуждаются в последующей экспериментальной проверке.

Рисунок 26. Расчетная структурная модель кузова легкового автомобиля

3. Система управления шасси автомобиля

3.1 Тормозная система автомобиля

1 – главный цилиндр гидропривода тормозов;2 – трубопровод контура «правый передний – левый задний тормоз»;3 – гибкий шланг переднего тормоза;4 – бачок главного цилиндра;5 – вакуумный усилитель;6 – трубопровод контура «левый передний – правый задний тормоз»;7 – тормозной механизм заднего колеса; 8 – упругий рычаг привода регулятора давления;9 – гибкий шланг заднего тормоза;10 – регулятор давления;11 – рычаг привода регулятора давления;12 – педаль тормоза;13 – тормозной механизм переднего колеса.

Анализ и оценка конструкции тормозной системы автомобиля

Тормозной механизм.

Для оценки конструктивных схем тормозных механизмов служат следующие критерии:

Коэффициент тормозной эффективности. Отношение тормозного момента, создаваемого тормозным механизмом, к условному приводному моменту

Кэ = Мтор /(∑Рrтр),

где Мтор — тормозной момент; ∑Р — сумма приводных сил; rтр — радиус приложения результирующей сил трения (в барабанных тормозных механизмах — радиус барабана rб, в дисковых — средний радиус накладки rср).

Тормозная эффективность должна оцениваться раздельно при движении вперед и назад.

Дисковые тормозные механизмы.

Дисковые тормозные механизмы применяются главным образом на легковых автомобилях: на автомобилях большого класса на всех колесах; на автомобилях малого и среднего классов — в большинстве случаев только на передних колесах (на задних колесах применяются барабанные тормозные механизмы).

В последние годы дисковые тормозные механизмы нашли также применение на грузовых автомобилях ряда зарубежных фирм.

Рисунок 28 - Схема дискового тормозного механизма и его статическая характеристика

Схема и статическая характеристика дискового тормозного механизма приведены на рисунке 28. Для него тормозной момент

Мтр = 2Р μ rср,


а коэффициент эффективности

Кэ = Мтр / (2Р rср) = μ.

При расчетном коэффициенте трения μ = 0,35 коэффициент эффективности Кэ = 0,35. Из этого можно заключить, что дисковый тормозной механизм обладает малой эффективностью (как можно будет увидеть дальше — минимальной сравнительно с другими тормозными механизмами). Так, при расчетном коэффициенте трения μ = 0,35 тормозной момент примерно в 3 раза меньше приводного момента. Основным достоинством дискового тормозного механизма является его хорошая стабильность, что отражено в статической характеристике, которая имеет линейный характер. В настоящее время стабильности отдается предпочтение перед эффективностью, так как необходимый тормозной момент можно получить увеличением приводных сил в результате применения рабочих цилиндров большего диаметра или усилителя.