История создания
Прототип современного гирокомпаса первым создал Г. Аншюц-Кэмпфе (запатентован в 1908), вскоре подобный прибор построил Э. Сперри (запатентован в 1911). В последующие годы разрабатывалось множество гирокомпасов различных модификаций, но наиболее удачные из них принципиально почти не отличались от устройств Аншюца и Сперри. Приборы современной конструкции значительно усовершенствованы по сравнению с первыми моделями; они отличаются высокой точностью и надежностью и удобнее в эксплуатации.
Простейший гирокомпас состоит из гироскопа, подвешенного внутри полого шара, который плавает в жидкости; вес шара с гироскопом таков, что его центр тяжести располагается на оси шара в его нижней части, когда ось вращения гироскопа горизонтальна.
Предположим, что гирокомпас находится на экваторе, а ось вращения его гироскопа совпадает с направлением запад — восток; она сохраняет свою ориентацию в пространстве в отсутствие воздействия внешних сил. Но Земля вращается, совершая один оборот в сутки. Так как наблюдатель, находящийся рядом, вращается вместе с планетой, он видит, как восточный конец (E) оси гироскопа поднимается, а западный (W) опускается; при этом центр тяжести шара смещается к востоку и вверх (позиция б). Однако сила земного притяжения препятствует такому смещению центра тяжести, и в результате ее воздействия ось гироскопа поворачивается так, чтобы совпасть с осью суточного вращения Земли, то есть с направлением север — юг (это вращательное движение оси гироскопа под действием внешней силы называется прецессией). Когда ось гироскопа совпадет с направлением север — юг (N — S, позиция в), центр тяжести окажется в нижнем положении на вертикали и причина прецессии исчезнет. Поставив метку "Север" (N) на то место шара, в которое упирается соответствующий конец оси гироскопа, и соотнеся ей шкалу с нужными делениями, получают надежный компас. В реальном гирокомпасе предусмотрены компенсация девиации компаса и поправка на широту места. Действие гирокомпаса зависит от вращения Земли и особенностей взаимодействия ротора гироскопа с его подвесом.
Электронный компас
Электронный компас в системе навигации NAVSTAR
Здесь рассматривается компас, построенный на принципе определения координат через спутниковые системы навигации. Существуют также компасы, использующие в качестве датчика блок магниторезисторов.
История создания электронного компаса тесно связана с системами спутниковой навигации.
Принцип действия такого компаса весьма прост:
1. На основании сигналов со спутников определяются координаты приёмника системы спутниковой навигации (и, соответственно, объекта)
2. Засекается момент времени, в который было сделано определение координат.
3. Выжидается некоторый интервал времени.
4. Повторно определяется местоположение объекта.
5. На основании координат двух точек и размера временного интервала вычисляется вектор скорости движения и из него:
направление движения
скорость движения
Осуществляется переход к шагу 2.
Ограничения:
Естественно, если объект не перемещается, направление движения узнать не получится. Исключение составляют достаточно большие объекты (например, самолёты), где есть возможность установить 2 приёмника (например, на концах крыльев). При этом координаты двух точек можно получить сразу, даже если объект неподвижен, и перейти к пункту 5.
Ещё одно ограничение обусловлено точностью определения координат спутниковыми системами позиционирования и влияет, главным образом, на тихоходные объекты (пешеходов).
Гироазимут
Гироазимут - навигационное гироскопическое устройство, предназначенное
- для сохранения заданного направления в горизонтальной плоскости, по которому первоначально ориентирована главная ось гироскопа; и
- для измерения углов поворота относительно заданного направления (углов рыскания).
Гироазимут: гироскопический прибор, предназначенный для сохранения заданного азимутального направления. В гироазимуте применяется уравновешивающий гироскоп с 3 степенями свободы, у которого центр тяжести совпадает с геометрическим центром (точкой подвеса), поэтому на гироазимут не влияют силы инерции, возникающие при маневрировании и качке судна. Гироазимуты применяют как курсоуказатели. Для превращения гироскопа в гироазимут, указывающий постоянное направление относительно меридиана, следует рассчитать уход (отклонение) главной оси гироскопа относительно плоскости истинного меридиана и компенсировать его. Эту функцию выполняет азимутальный корректор. Гироскоп не имеет устойчивого равновесного положения относительно горизонтальной системы координат в азимуте, поэтому во всех гироазимутах главная ось гироскопа искусственно удерживается в плоскости горизонта с помощью горизонтального корректора.
Автопрокладчик
Автопрокладчик прибор автоматически прокладывающий курс судна на навигационной карте получая показания курса от гирокомпаса, а данные о пройденном расстоянии от лага.
Согласно общепринятому определению, автопрокладчик, прибор, автоматически прокладывающий курс судна на навигационной карте, получая показания курса от гирокомпаса, а данные о пройденном расстоянии от лага или по сигналам радионавигационной системы. Прежде автопрокладчик называли одографом.
Автопрокладчик - навигационный прибор, автоматически ведущий прокладку на навигационной карте при получении:
- показаний курса от гирокомпаса;
- данных о пройденном расстоянии от лага или по сигналам радионавигационной системы; а также
- поправок на дрейф и течение.
Астрономические приборы навигации
Секстан (Октан)
Секстан [сс1] (происхождение: от лат. sextans, sextantis — шестая часть)— это измерительный инструмент, используемый для измерения величины угла между двумя видимыми объектами. Обычно секстан используется для измерения возвышения астрономического объекта над горизонтом с целью определения географических координат. Например, измерив угол возвышения Солнца в полдень, можно вычислить широту. С помощью секстана можно измерять углы до 140°.
Длина шкалы секстанта составляет 1/6 от полного круга или 60°, отсюда и название секстана. Октант — похожий прибор, но с более короткой шкалой (1/8 круга или 45°), который использовался до 1767, пока его не заменил секстан. В 1767 первое издание навигационного альманаха собрало в своих таблицах лунные расстояния, что позволило навигаторам вычислять текущее время, зная угол между солнцем и луной. Однако, этот угол иногда больше 90°, и поэтому не может быть измерен с помощью октанта.
В секстане используется принцип совмещения изображений двух объектов при помощи двойного отражения одного из них. Этот принцип был изобретён Исааком Ньютоном в 1699 году, но не был опубликован. Два человека независимо изобрели секстан в 1730: английский математик Джон Хадли и американский изобретатель Томас Годфри. Секстан вытеснил астролябию как главный навигационный инструмент.
Секстан увековечен на небе астрономом Гевелием в виде одноименного созвездия.
Современный секстант
Главная особенность, которая позволила секстану вытеснить астролябию, заключается в том, что при его использовании положение астрономических объектов измеряются относительно горизонта, а не относительно самого инструмента. Это дает бо́льшую точность.
При наблюдении через секстан, горизонт и астрономический объект совмещаются в одном поле зрения, и остаются неподвижными относительно друг друга, даже если наблюдатель находится на плывущем корабле. Это происходит, потому что секстан показывает неподвижный горизонт прямо, а астрономический объект — сквозь два противоположных зеркала.
Использование секстана для определения возвышения солнца над горизонтом
Изображение в секстане совмещает в себя два вида. Первый — вид неба через зеркала. Второй — вид горизонта. Секстан используют, регулируя рычаг и установочный винт до тех пор, пока нижний край изображения астрономического тела не коснется горизонта. Точный момент времени, в который проводится измерение, засекает ассистент с часами. Затем угол возвышения считывается со шкалы, верньера и установочного винта, и записывается вместе со временем.
После этого нужно преобразовать данные с помощью некоторых математических процедур. Самый простой метод — нарисовать равновозвышенный круг используемого астрономического объекта на глобусе. Пересечение этого круга с линией навигационного счисления или другим указателем даёт точное местоположение.
Секстан — чувствительный инструмент. Если его уронить, то дуга может погнуться. После падения он может потерять точность.
Секстан - угломерный инструмент отражательного типа для измерения высот небесных светил и углов на земной поверхности. Система зеркал в Секстане обусловливает ход лучей, который исключает ошибку, вызываемую небольшим отклонением плоскости инструмента от плоскости измеряемого угла. Благодаря этому измерение углов Секстана можно производить держа его в руке даже в условиях качки. Идея устройства Секстана принадлежит И. Ньютону (1699),а сконструирован он англичанином Дж. Гадлеем и американцем Т. Годфреем в 1731 г. независимо друг от друга. Помимо мореходной астрономии Секстан используется в навигации и гидрографии для измерения горизонтальных углов между береговыми ориентирами и определения по ним точного местонахождения судна. С помощью навигационного Секстана можно производить измерения с точностью до нескольких десятых долей минуты. Некоторые специальные морские и авиационные Секстаны имеют гироскопические устройства и др. искусственные уровни и приспособления, позволяющие производить астрономические измерения при отсутствии видимого горизонта относительно плоскости истинного горизонта. Для увеличения точности отсчета и упрощения процесса измерения такие Секстаны оборудуют осредняющими механизмами, дающими средний отсчет за время измерений, а некоторые Секстаны имеют устройства, дистанционно регистрирующие моменты измерений и соответствующие им отсчеты.