где
- технологическое время на сортировку вагонов; если она производится со сторонывытяжки, то это время определяется по формуле
(приведена выше). - технологическое время на сборку групп вагонов с разных путей, определяется по формуле .где Р – количество путей с которых переставляются вагоны,
; - среднее количество групп вагонов в многогруппном составе; - количество вагонов, переставляемых на путь сборки формируемого состава.Маневровые тепловозы выпускают нескольких типов, различающихся между собой прежде всего по мощности. Более мощный тепловоз, естественно, стоит дороже и сопряжен с большими расходами на его эксплуатацию.
Какой локомотив требуется для данной станции: менее мощный или более мощный, зависит от величин наибольшей массы маневрового состава
и приведенного уклона путей (‰) в зоне маневров. В зависимости от значений этих величин устанавливается минимально необходимая сила тяги F в кН ,где Р – масса локомотива, т.
W – удельное сопротивление движению состава основное и дополнительное от стрелок и
кривых, Н/т;
Vр – скорость разгона, км/ч;
а – удельная сила тяги, необходимая для сообщения ускорения маневровому составу до
разгона, Н/т.
, Н/т.Минимально необходимая касательная мощность маневрового локомотива, Nк кв определиться по формуле:
.С учетом выражения для F эта мощность
,где
- отношение касательной мощности локомотива к номинальной по двигателю (для тепловозов ).Маневровые локомотивы должны удовлетворять также условию трогания составов с места.
,где
- расчетное удельное сопротивление при трогании с места н/т в момент достижения скорости Vтр.По полученным значениям
по справочным данным определяются те тепловозы, параметры которых близки к этим значениям.Станция как система массового обслуживания.
Производственные процессы выполняемые на станциях и отдельных объектах станций с поездами и вагонами имеют характер массового обслуживания.
Простейшая схема функционирования системы массового обслуживания.
Параметры системы массового обслуживания – величины, характеризующие эту систему. К числу параметров относятся:
1. l - интенсивность входящего потока – это среднее число заявок, поступающих в систему в единицу времени.
l= ¾¾,
Iсрвх
где Iсрвх – средний интервал, между заявками, поступающими на обслуживание.
2. m - интенсивность обслуживания, показывает, сколько заявок может быть обслужено в единицу времени.
m = ¾¾,
t0
где t0– среднее время обслуживания.
Если одновременно функционирует не одно обслуживающее устройство, а два и более т.е. S(бригад ПТО, маневровых локомотивов и др.), то суммарная интенсивность обслуживания будет
.3. Загрузка системы есть отношение интенсивности входящего потока к интенсивности обслуживания.
.Она всегда должна быть меньше единицы
. Загрузку можно определять не только по приведенной выше формуле, но и путем деления общего времени, необходимого для выполнения всех операций за сутки (или смену) к продолжительности смены или суток.Например, загрузка бригады ПТО при поступлении 50 поездов в сутки и при средней продолжительности технического обслуживания одного поезда 20 мин.
.4. Закон распределения входящего потока и коэффициент вариации интервалов между моментами поступления заявок на обслуживание.
,где
- среднее квадратическое отклонение интервалов между моментами поступления заявок на обслуживание. ,где
- частота отдельных значений интервалов.Как известно, закон распределения любой переменной величины представляет собой соотношение между отдельными значениями этой величины и соответствующими им вероятностями (или частотами).
5. Закон распределения времени обслуживания и коэффициент вариации этого времени
,где
- среднее квадратическое отклонение времени обслуживания .К показателям системы массового обслуживания относятся те величины, которые подсчитываются на основании параметров, например: средний простой в ожидании обслуживания, среднее число заявок в ожидании обслуживания, частоты различных производственных ситуаций в системе массового обслуживания (например частоты того, что времени ожидания обслуживания будет меньше или больше заданного значения, что времени простоя обслуживающего устройства будет больше или меньше какой-то величины и др.).
Методы нормирования межоперационных простоев вагонов.
На сортировочных станциях на долю межоперационных простоев вагонов (за вычетом времени на производственные операции и накопления) приходится 40-50% (а нередко и более) от общего времени простоя транзитных вагонов с переработкой. В простое местных вагонов на различных станциях на долго межоперационных простоев приходится 70% и более от общего времени.
Существует 3 основных метода нормирования межоперационных простоев.
1. С помощью суточного плана-графика работы станций. При этом средний простой вагона в ожидании выполнения операций находят делением определенных по плану-графику вагоно-ч ожидания выполнения производственных операций на число вагонов.
.Достоинством метода считается его простота и то, что он широко распространен. Недостаток – низкая точность результатов расчетов. Ошибка составляет порядка 30%. Это объясняется тем, что суточный план-график строится на основе средних значений отдельных величин, а не фактических значений с учетом их колебаний.
2. С помощью формул теории массового обслуживания. Формулы выведены для условий, когда интервалы между моментами поступления заявок на обсуждении распределены по закону Эрланча, а также когда поток заявок на обслуживание подчинен биноминальному закону.
Для эрланговених входящих потоков средний простой в ожидании обслуживания может быть рассчитан с помощью формулы Полячека-Хинчина
Значения входящих в формулу элементов приводились ранее.
Эта же формула может быть преобразована к следующим видам
Для условий сортировочных станций проф. Акулиничевым предложена формула.
Удовлетворительные результаты расчета межоперационных простоев по формулам теории массового обслуживания получаются при загрузках не более 0,70-0,75, а при больших значениях простои оказываются завышенными по сравнению с фактическими значениями.
3. С помощью метода математического моделирования, в частности метода статистического имитационного моделирования с выполнением расчетов на ЭВМ. Достоинством метода является то, что он применим при любых законах распределения интервалов между моментами поступления вагонов для обслуживания, а результаты расчетов могут быть получены с любой заданной точностью, например с допустимой в инженерных расчетах 5%-ой ошибкой. В то же время метод моделирования является достаточно трудоемким. Его применение оправдано для комплексных расчетов сложных систем.