Смекни!
smekni.com

Устройство тональных рельсовых цепей (стр. 1 из 6)

РЕЛЬСОВЫЕ ЦЕПИ НА МЕТРОПОЛИТЕНЕ

Введение

По мере роста интенсивности движения поездов и пассажиропотока на линиях метрополитена совершенствуются и его технические средства, обеспечивающие безопасность движения, в состав которых входят рельсовые цепи.

История развития рельсовых цепей тесно связана с непрерывным усовершенствованием и модернизацией, в первую очередь, путевой автоматической блокировки. При сооружении первой очереди метрополитена в 1934-1935 гг., когда отсутствовал опыт эксплуатации отечественного метрополитена, система автоблокировки была заимствована у зарубежных метрополитенов. Двузначная система с электромеханическими автостопами позволяла пропускать не более 35 пар поездов в час. Система была реализована на двухниточных рельсовых цепях переменного тока промышленной частоты с фазочувствительными двухэлементными секторными реле и путевыми дросселями ДОМБ-1000.

Для повышения степени безопасности движения поездов в каждую рельсовую цепь были включены два путевых реле. Если нарушалось действие хотя бы одного из путевых реле, другое переключало сигнал на красный свет и исключало возможность ложного разрешающего показания.

В 1951-1954 гг., в схему рельсовых цепей был введен емкостной резонансный ограничитель тока. Это повысило надежность работы устройств и снизило расход электроэнергии, необходимой для работы рельсовых цепей, более чем в 10 раз.

Изолирующие стыки, отделяющие одну рельсовую цепь от другой, вначале скреплялись деревянными накладками, которые быстро изнашивались. Потом стали использовать металлические накладки, под которые ставились фибровые прокладки. С 1972 г. стали применяться клееболтовые изолирующие стыки. Для канализации обратного тягового тока были применены дроссель-трансформаторы типа ДТМ-0,17.

В 1972 г. на линиях метрополитена впервые стала применяться новая система регулирования движения поездов - автоматическая локомотивная сигнализация с автоматическим регулированием скорости (АЛС-АРС).

Дальнейшее совершенствование устройств позволило обеспечить централизованное размещение аппаратуры рельсовых цепей на станциях. Расчетная пропускная способность линий метрополитена была увеличена до 42-45 пар поездов в час.

В 1975 г. на Харьковском метрополитене впервые были введены в эксплуатацию рельсовые цепи без изолирующих стыков (БРЦ). Применение БРЦ позволило сократить количество металлоемких дроссель-трансформаторов и малонадежных изолирующих стыков, а также снизить потери электроэнергии на вождение поездов. Бесстыковые рельсовые цепи находят все более широкое применение на линиях метрополитенов страны.

Глава 1. общие понятия

1.1 Назначение, принцип действия и режимы работы

Рельсовой цепью называется электрическая цепь, проводниками в которой служат рельсовые нити железнодорожного пути.

Основным назначением рельсовой цепи (РЦ) является автоматическая, непрерывная выдача информации о состояниях рельсовой линии в пределах контролируемого участка пути:

свободность рельсовой линии участка пути и исправность рельсов;

занятость рельсовой линии участка пути подвижным составом (поездом);

нарушение ее электрической целостности.

Эта информация, поступающая от ряда РЦ, дает возможность проконтролировать местонахождение поездов при их движении и оценить расстояние между поездом и препятствием.

Рельсовые цепи, как средство обнаружения подвижного состава на пути, используются для выполнения логических зависимостей в устройствах автоматики по регулированию движения поездов и ограждения путей. С помощью информации, получаемой от рельсовых цепей, действуют системы лучевой автоматической блокировки на перегонах, электрической и диспетчерской централизации стрелок и сигналов на станциях с лучевым развитием, а также система автоматического регулирования скорости движения поездов (АЛС-АРС) и автоведения. Рельсовая цепь (рис.1.1) состоит из питающего конца, на котором подключена аппаратура питания РЦ, рельсовой линии, используемой для передачи электрического тока от источника питания к приемнику, и приемного конца, где подключена аппаратура, необходимая для работы путевого реле.


Рис.1.1 Схема рельсовой цепи.

Рельсовая линия включает в себя рельсовые нити пути, составленные из рельсовых звеньев. Рельсовые звенья сваривают на стыках в плети, а при отсутствии сварки - соединяют стыковыми соединителями. Рельсовые линии смежных РЦ изолируют друг от друга изолирующими стыками (ИС). В случае бесстыкового пути линии смежных рельсовых цепей не изолируют.

На питающем конце РЦ в качестве источника питания используется путевой питающий трансформатор ПТ, который подключен к рельсовым нитям через ограничитель тока (регулируемый резистор Rо) и согласующий элемент СЭ. На приемном конце в качестве приемника используется путевое реле, которое подключено к рельсовым нитям через другой согласующий элемент.

Если путь в пределах рельсовой цепи не занят подвижным составом, то электрический ток от питающего трансформатора ПТ протекает по рельсовым нитям и обмотке путевого реле П. Ток, передаваемый в рельсовую линию для контроля ее состояния, называют сигнальным током РЦ. При прохождении сигнального тока по обмотке реле якорь притягивается к сердечнику электромагнита и замыкаются фронтовые контакты Ф реле, по состоянию которых осуществляется контроль свободности путевого участка. Возбужденное состояние путевого реле означает также исправность всех составляющих элементов РЦ, в том числе и рельсовых нитей.

Когда на путь в пределах рельсовой цепи вступает поезд, образуется электрическая цепь, в которой ток от трансформатора ПТ протекает через колесные пары. Рельсовая цепь шунтируется, поскольку параллельно аппаратуре приемного конца подключается шунт - колесные пары поезда с очень малым электрическим сопротивлением. Сигнальный ток в основном протекает через колесные пары, и ток в путевом реле резко падает. В результате фронтовые контакты реле размыкаются, и РЦ считается занятой. Снижение тока (напряжения) в обмотке реле под действием колесных пар называется шунтовым эффектом, а колесные пары в данном случае называются поездным шунтом.

Путевое реле отпускает якорь не только при занятии РЦ, но и в случае повреждения рельсовых нитей, когда нарушается электрическая целостность цели питания путевого реле. Свойство рельсовой цепи контролировать исправность рельсовых нитей называется чувствительностью к излому (повреждению) рельса.

Условия работы РЦ в отличие от других электрических цепей сложны. Рельсовая линия слабо электрически изолирована от земли. Изоляторами рельсов являются шпалы, на которых они находятся в непосредственной близости от основания пути (балласта). Из-за плохой изоляции рельсов от балласта возникает ток утечки между рельсовыми нитями на всем протяжении рельсовой линии. Электрическое сопротивление, оказываемое току утечки из одной рельсовой нити в другую через балласт и шпалы, называется сопротивлением изоляции (балласта) рельсовой линии.

На сопротивление изоляции влияют многие факторы: наличие влаги, изменение температуры окружающей среды, состав балласта и состояние шпал, а также качество эксплуатационного обслуживания пути.

Стыковые соединители в виде металлических накладок, соединяющие рельсовые звенья, в процессе эксплуатации не создают устойчивый электрический контакт, и поэтому сопротивление рельсовой линии меняется в значительных пределах. При больших значениях сопротивления рельсовой линии работа РЦ может быть неустойчивой или нарушаться.

Главной особенностью рельсовых цепей является то, что они обеспечивают информацию о состоянии рельсовой линии, работал в нескольких режимах:

нормальном (регулировочном) - режиме работы при свободном путевом участке;

шунтовом - при занятом путевом участке поездом;

контрольном - режиме контроля электрической целостности рельсовой линии.

Все режимы работы РЦ должны выполняться с учетом возможных неблагоприятных условий.

На условия работы РЦ в каждом из режимов влияют сопротивление рельсовой линии, сопротивление изоляции и напряжение питания.

Наиболее тяжелые условия для каждого режима создаются при разных значениях этих параметров. Для обеспечения нормального режима работы наиболее неблагоприятными являются такие значения параметров, при которых ток в реле получается минимальным: максимальное сопротивление рельсовой линии, минимальное сопротивление изоляции и минимальное значение напряжения питания. Для шунтового режима неблагоприятны такие значения параметров рельсовой цепи, при которых ток в путевом реле получается максимальным и шунтирующее воздействие колесных пар поезда ослабевает: минимальное сопротивление рельсовой линии, максимальное сопротивление изоляции и максимальное напряжение источника питания.

При повреждении рельса не происходит полного электрического размыкания рельсовой цепи вследствие утечки сигнального тока через балласт, в обход места размыкания. Значение сигнального тока, протекающего через путевое реле в контрольном режиме, зависит от значения сопротивления изоляции. Критическим сопротивлением изоляции называется сопротивление, при котором ток в путевом реле максимален. Оно зависит от места повреждения рельсовой линии и различно для каждой рельсовой цепи. Наихудшими условиями для выполнения контрольного режима, при которых ток в реле максимален, являются: минимальное сопротивление рельсовой линии, критическое сопротивление изоляции и максимальное напряжение источника питания.

Работа рельсовых цепей метрополитена осложняется протеканием в рельсах обратного тягового тока, создающего помехи, которые могут нарушить нормальную работу РЦ. По междупутным кабельным соединениям для пропуска тягового тока образуются обходные пути