Построение плана начинаем с нанесения элементов неподвижного звена (точек опор О1 и О2 и линии хода ползуна y – y). Под углом б =210° к линии x – x из точки О1 проводим ось ведущего звена и от точки О1 откладываем на ней отрезок О1А, равный длине кривошипа.
Затем определяем положение точки В. Для этого из точки А радиусом АВ и точки О2 радиусом ВО2 делаем засечки. На продолжении звена АВ находим положение точки С. Для того чтобы найти положение точки D, проводим дугу из точки С – радиусом CD. Точка пересечения с линией хода ползуна будет точкой D.
Частота вращения кривошипа О1А n1 = 165 об/мин.
Угловая скорость кривошипа О1А, с-1,
.2.3 Определение скоростей точек механизма методом планов скоростей
Зная закон движения ведущего звена и длину каждого звена механизма, можно определить скорости его точек по значению и направлению в любом положении механизма путем построения плана скоростей для этого положения. Значения скоростей отдельных точек механизма необходимы при определении производительности и мощности машины, потерь на трение, кинематической энергии механизма; при расчете на прочность и решении других динамических задач.
Построение планов скоростей и чтение их упрощаются при использовании свойств этих планов:
1) векторы, проходящие через полюс PV, выражают абсолютные скорости точек механизма. Они всегда направлены от полюса. В конце каждого вектора принято ставить малую букву a, b, c, ... или другую. Точки плана скоростей, соответствующие неподвижным точкам механизма, находятся в полюсе РV (О1, О2);
2) векторы, соединяющие концы векторов абсолютных скоростей, не проходящие через полюс, изображают относительные скорости. Направлены они всегда к той букве, которая стоит первой в обозначении скорости.
3) каждое подвижное звено механизма изображается на плане скоростей соответствующим одноименным, подобным и сходственно расположенным контуром, повернутым относительно схемы механизма на 90° в сторону мгновенного вращения данного звена. Это свойство плана называется свойством подобия и позволяет легко находить скорость точек механизма.
Находим скорость точки А кривошипа О1А по формуле, м/с:
VA = w1
O A; VA = 17,27 × 0,120 = 2.0724 (2.8)Вектор
направлен перпендикулярно к оси звена О1А в сторону его вращения. Задаемся длиной отрезка РVа (произвольно), который на плане будет изображать скорость точки А; . Тогда масштаб плана скоростей, м/с × мм-1,. (2.9)
Из произвольной точки PV, в которой помещены и точки опор О1, О2, откладываем перпендикулярно к звену О1А отрезок РVа = 70 мм.
Для дальнейшего построения плана скоростей и определения скорости точки В составляем уравнение:
;(2.10)где
- скорость точки А, известна по значению и направлению; – относительная скорость точки В во вращении вокруг точки А. - скорость точки О2 (равна нулю); - относительная скорость точки В во вращении вокруг точки О2Относительные скорости
и известна по линии действия: перпендикулярна к звену АВ, проводится на плане из точки а (конец вектора ); перпендикулярна к звену ВО2, проводится на плане из точки О2 (в полюсе Рv). На пересечении этих двух линий действия получим точку b конец вектора скорости точки В: · м/с. (2.11)Вектор ab изображает скорость
точки В в относительном вращении вокруг точки А: · м/с. (2.12)Вектор О2В изображает скорость
точки В в относительном вращении вокруг точки О2: = · м/с. (2.13)Положение точки С находим на плане скоростей по свойству подобия (из пропорции), мм:
(2.14)Подставив значения длины звеньев на схеме и длины соответствующих отрезков на плане, определяем место точки С на плане скоростей. Соединив ее с полюсом, определяем значение скорости точки С, м/с:
. (2.15)Для определения скорости точки D воспользуемся векторными равенствами:
(2.16)где:
– скорость точки С, известна по значению и направлению; – относительная скорость точки D во вращении вокруг точки С;Относительная скорость
известна по линии действия: перпендикулярна к звену DC, проводится на плане из точки С (конец вектора ). Скорость точки Dотносительно стойки направлена по линии хода ползуна, проводится на плане из полюса PV параллельно ходу ползуна до пересечения с вектором относительной скорости . Точка пересечения будет точкой d. определяющей конец вектора скорости :VD =
· ; VD = 78 × 0,013 = 1,014 м/с. (2.17)