j° | Силы, Н | ||||
Т | РК | Rш.ш | КРК | RK | |
0 | 0 | -16247 | 16247 | -24329 | 24329 |
30 | -5180 | -12554 | 13581 | -20636 | 21000 |
60 | -3070 | -6774 | 7437 | -14856 | 14915 |
90 | 2147 | -6452 | 6800 | -14534 | 14719 |
120 | 3870 | -9515 | 10272 | -17597 | 18055 |
150 | 2289 | -11446 | 11673 | -19528 | 19625 |
180 | 0 | -11838 | 11838 | -19920 | 19920 |
210 | -2289 | -11446 | 11673 | -19528 | 19527 |
240 | -3935 | -9576 | 10353 | -17658 | 18055 |
270 | -2626 | -6585 | 7089 | -14667 | 14719 |
300 | 1208 | -6218 | 6334 | -14300 | 14130 |
330 | 1248 | -7472 | 7575 | -15554 | 15602 |
360 | 0 | 882 | 882 | -7200 | 7200 |
375 | 12888 | 31602 | 34129 | 23520 | 26886 |
390 | 13051 | 11014 | 17077 | 2932 | 13247 |
420 | 8608 | -3289 | 9215 | -11371 | 14130 |
450 | 7728 | -7998 | 11122 | -16080 | 17760 |
480 | 6869 | -12348 | 14130 | -20430 | 21588 |
510 | 3298 | -13909 | 14295 | -21991 | 22176 |
540 | 0 | -13298 | 13298 | -21380 | 21380 |
570 | -2472 | -11893 | 12147 | -19975 | 20018 |
600 | -4041 | -9676 | 10486 | -17758 | 18251 |
630 | -2374 | -6515 | 6934 | -14597 | 14522 |
660 | 2846 | -6707 | 7286 | -14789 | 14326 |
690 | 5039 | -12373 | 13360 | -20455 | 21195 |
720 | 0 | -16247 | 16247 | -24329 | 24329 |
Таблица 10.- Значения Rш.шi , для лучей
Rш.шi | Значения Rш.шi , кН , для лучей | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Rш.ш0 | 16,2 | 16,2 | 16,2 | - | - | - | - | - | - | - | 16,2 | 16,2 |
Rш.ш30 | 13,6 | 13,6 | 13,6 | - | - | - | - | - | - | - | – | 13,6 |
Rш.ш60 | 7,4 | 7,4 | 7,4 | - | - | - | - | - | - | - | – | 7,4 |
Rш.ш90 | 6,8 | 6,8 | – | - | - | - | - | - | - | - | 6,8 | 6,8 |
Rш.ш120 | 10,3 | 10,3 | – | - | - | - | - | - | - | - | 10,3 | 10,3 |
Rш.ш150 | 11,7 | 11,7 | – | - | - | - | - | - | - | - | 11,7 | 11,7 |
Rш.ш180 | 11,8 | 11,8 | 11,8 | - | - | - | - | - | - | - | 11,8 | 11,8 |
Rш.ш210 | 11,7 | 11,7 | 11,7 | - | - | - | - | - | - | - | – | 11,7 |
Rш.ш240 | 10,4 | 10,4 | 10,4 | - | - | - | - | - | - | - | – | 10,4 |
Rш.ш270 | 7,1 | 7,1 | 7,1 | - | - | - | - | - | - | - | – | 7,1 |
Rш.ш300 | 6,3 | 6,3 | – | - | - | - | - | - | - | - | 6,3 | 6,3 |
Rш.ш330 | 7,6 | 7,6 | – | - | - | - | - | - | - | - | 7,6 | 7,6 |
Rш.ш360 | – | – | – | - | - | 0,9 | 0,9 | 0,9 | 0,9 | - | – | – |
Rш.ш390 | – | - | - | - | - | - | 17,1 | 17,1 | 17,1 | 17,1 | – | – |
Rш.ш420 | – | - | - | - | - | - | - | - | 9,2 | 9,2 | 9,2 | 9,2 |
Rш.ш450 | 11,1 | - | - | - | - | - | - | - | - | 11,1 | 11,1 | 11,1 |
Rш.ш480 | 14,1 | 14,1 | - | - | - | - | - | - | - | – | 14,1 | 14,1 |
Rш.ш510 | 14,3 | 14,3 | - | - | - | - | - | - | - | - | 14,3 | 14,3 |
Rш.ш540 | 13,3 | 13,3 | 13,3 | - | - | - | - | - | - | - | 13,3 | 13,3 |
Rш.ш570 | 12,1 | 12,1 | 12,1 | - | - | - | - | - | - | - | – | 12,1 |
Rш.ш600 | 10,5 | 10,5 | 10,5 | - | - | - | - | - | - | - | – | 10,5 |
Rш.ш630 | 6,9 | 6,9 | 6,9 | - | - | - | - | - | - | - | – | 6,9 |
Rш.ш660 | 7,3 | 7,3 | – | - | - | - | - | - | - | - | 7,3 | 7,3 |
Rш.ш690 | 13,4 | 13,4 | 13,4 | - | - | - | - | - | - | - | 13,4 | 13,4 |
ΣRш.ш.i | 223,9 | 212,8 | 134,4 | - | - | 0,9 | 18 | 18 | 27,2 | 37,4 | 153,4 | 233,1 |
Силы и моменты в КШМ непрерывно изменяются и, если они не уравновешены, то вызывают вибрацию двигателя, передающейся раме автомобиля.
4.3.1 Уравновешивание четырехцилиндрового рядного двигателя
Порядок работы двигателя 1-3-4-2. Кривошип расположен под углом 180º.
Силы инерции первого порядка и их моменты при указанном расположении кривошипов взаимноуравновешивается: ΣРjI=0; ΣМjI=0.
Центробежные силы для всех цилиндров равны и направлены попарно в разные стороны. Равнодействующая этих сил и момент равны нулю: ΣКR=0; ΣМR=0.
Суммарный момент от сил инерци второго порядка также равен нулю: ΣМjII=0.
Силы инерции второго порядка для всех цилиндров равны и направленны в одну сторону.
Для разгрузки коленвала от действия местных центробежных сил применяем противовесы.
В целях разгрузки коренных шеек от местных инерционных сил целесообразно установить противовесы на продолжении щек, прилегающих к ним.
Определяем равнодействующую силу инерции второго порядка:
ΣРjII = 4×РjII= 4×mj×R×
, (121)где mj = 1,612 кг – массы, совершающие возвратно-поступательное движение;
;w = 346 рад/с – угловая скорость вращения коленчатого вала;
φ = 90º.
ΣРjII = 4×1,612×0,043×
Определяем силу инерции одного противовеса:
Рпр = - 0,5× ΣРjII×l / l1 , (122)
где l = 116 мм (см. рисунок 5.1)
l1 = 85 мм (см. рисунок 5.1)
Рпр = - 0,5× -8926 ×116 / 85 = 6093 Н.
Масса каждого противовеса:
mпр= Рпр/(
), (123)где ρ = 0,04 м – расстояние центра тяжести общего противовеса от оси коленчатого вала
mпр= 6093 / (0,04 × 3462) = 1,27 кг.
Рис. 5.1. Схема сил инерции действующих в четырехцилиндровом рядном двигателе.
4.3.2 Равномерность крутящего момента и равномерность хода двигателя
Из динамического расчета имеем максимальный крутящий момент Мкр.max=636,1 Н×м; минимальный индикаторный крутящий момент Мкр.min= -104,9 Н×м и средний индикаторный крутящий момент Мкр.ср=243 Н×м.
Определяем равномерность крутящего момента:
m = (Мкр.max– Мкр.min) / Мкр.ср, Н×м ; (124)
m = (636,1-(-104,9)) / 243 = 3,05.
Определяем избыточную работу крутящего момента:
Lизб.=
·MM·Mφ΄,Дж , (125)где Mφ΄–масштаб угла поворота вала на диаграмме Мкр., рад/мм;
Mφ΄= 4 · π / (i·ОА), рад/мм ;(126)
Mφ¢ = 4 · 3,14 / (4·60)= 0,0523 рад/мм.
F¢= 357 мм2 -площадь над прямой среднего крутящего момента;
MM = 16,878 Н· м/мм/
Lизб.= 357 × 16,878 ×0,0523 = 315,1 Дж.
Принимаем коэффициент неравномерности хода двигателя δ=0,01.
Определяем момент инерции движущихся масс двигателя, приведенных к оси коленчатого вала:
Iо = Lизб / (δ· ω2), кг·м2;(127)
Iо = 315,1 / (0,01×3462) = 0,263 кг·м2.
Расчет деталей с целью определения напряжений и деформаций, возникающий при работе двигателя, производится по формулам сопротивления материалов и деталей машин. До настоящего времени большинство из используемых расчетных выражений дают лишь приближенные значения напряжений.
Несоответствие расчетных и фактических данных объясняется различными причинами, основными из которых являются: отсутствие действительной картины распределения напряжений в материале рассчитываемой детали; использование приближенных расчетных схем действия сил и места их приложения; наличие трудно учитываемых знакопеременных нагрузок и невозможность определения их действительных значений; трудность определения условий работы многих деталей двигателя и их термических напряжений; влияние неподдающихся точному расчету упругих колебаний; невозможность точного определения влияния состояния поверхности, качества обработки (механической или термической), размеров детали и т.д. на величину возникающих напряжений.
В связи с этим применяемые методы расчета позволяют получить напряжения и деформации, являющиеся лишь условными величинами и характеризующие только сравнительную напряженность рассчитываемой детали.
5.1 Расчёт цилиндропоршневой группы
5.1.1 Расчёт поршня
На основании данных теплового расчёта скоростной характеристики получили что:
– Диаметр поршня D=100мм;
– Ход поршня S=86мм;
– Максимальное давление сгорания pz=7,57МПа, при nN=3310 об/мин и действительном давлении сгорания pzd=6,43МПа;
– Площадь поршня Fп=78,5см2;
– Наибольшая нормальная сила Nmax=2864 H, при φ=3900;
– Масса поршневой группы mn=1,18 кг;
– Обороты максимальной скорости, nxx=3975 об/мин, при λ=0,269.
В соответствии с существующими аналогичными двигателями и с учётом соотношений принимаем по таблице 51 [1]:
– Толщина днища поршня δ=9мм;
– Высота поршня Н=105мм;
– Высота юбки поршня hю=75мм;
– Радиальная толщина кольца t=4мм;