Смекни!
smekni.com

Тепловой расчет двигателя внутреннего сгорания (стр. 7 из 10)

Силы, Н
Т РК Rш.ш КРК RK
0 0 -16247 16247 -24329 24329
30 -5180 -12554 13581 -20636 21000
60 -3070 -6774 7437 -14856 14915
90 2147 -6452 6800 -14534 14719
120 3870 -9515 10272 -17597 18055
150 2289 -11446 11673 -19528 19625
180 0 -11838 11838 -19920 19920
210 -2289 -11446 11673 -19528 19527
240 -3935 -9576 10353 -17658 18055
270 -2626 -6585 7089 -14667 14719
300 1208 -6218 6334 -14300 14130
330 1248 -7472 7575 -15554 15602
360 0 882 882 -7200 7200
375 12888 31602 34129 23520 26886
390 13051 11014 17077 2932 13247
420 8608 -3289 9215 -11371 14130
450 7728 -7998 11122 -16080 17760
480 6869 -12348 14130 -20430 21588
510 3298 -13909 14295 -21991 22176
540 0 -13298 13298 -21380 21380
570 -2472 -11893 12147 -19975 20018
600 -4041 -9676 10486 -17758 18251
630 -2374 -6515 6934 -14597 14522
660 2846 -6707 7286 -14789 14326
690 5039 -12373 13360 -20455 21195
720 0 -16247 16247 -24329 24329

Таблица 10.- Значения Rш.шi , для лучей

Rш.шi Значения Rш.шi , кН , для лучей
1 2 3 4 5 6 7 8 9 10 11 12
Rш.ш0 16,2 16,2 16,2 - - - - - - - 16,2 16,2
Rш.ш30 13,6 13,6 13,6 - - - - - - - 13,6
Rш.ш60 7,4 7,4 7,4 - - - - - - - 7,4
Rш.ш90 6,8 6,8 - - - - - - - 6,8 6,8
Rш.ш120 10,3 10,3 - - - - - - - 10,3 10,3
Rш.ш150 11,7 11,7 - - - - - - - 11,7 11,7
Rш.ш180 11,8 11,8 11,8 - - - - - - - 11,8 11,8
Rш.ш210 11,7 11,7 11,7 - - - - - - - 11,7
Rш.ш240 10,4 10,4 10,4 - - - - - - - 10,4
Rш.ш270 7,1 7,1 7,1 - - - - - - - 7,1
Rш.ш300 6,3 6,3 - - - - - - - 6,3 6,3
Rш.ш330 7,6 7,6 - - - - - - - 7,6 7,6
Rш.ш360 - - 0,9 0,9 0,9 0,9 -
Rш.ш390 - - - - - 17,1 17,1 17,1 17,1
Rш.ш420 - - - - - - - 9,2 9,2 9,2 9,2
Rш.ш450 11,1 - - - - - - - - 11,1 11,1 11,1
Rш.ш480 14,1 14,1 - - - - - - - 14,1 14,1
Rш.ш510 14,3 14,3 - - - - - - - - 14,3 14,3
Rш.ш540 13,3 13,3 13,3 - - - - - - - 13,3 13,3
Rш.ш570 12,1 12,1 12,1 - - - - - - - 12,1
Rш.ш600 10,5 10,5 10,5 - - - - - - - 10,5
Rш.ш630 6,9 6,9 6,9 - - - - - - - 6,9
Rш.ш660 7,3 7,3 - - - - - - - 7,3 7,3
Rш.ш690 13,4 13,4 13,4 - - - - - - - 13,4 13,4
ΣRш.ш.i 223,9 212,8 134,4 - - 0,9 18 18 27,2 37,4 153,4 233,1

4.3 Уравновешивание двигателя

Силы и моменты в КШМ непрерывно изменяются и, если они не уравновешены, то вызывают вибрацию двигателя, передающейся раме автомобиля.

4.3.1 Уравновешивание четырехцилиндрового рядного двигателя

Порядок работы двигателя 1-3-4-2. Кривошип расположен под углом 180º.

Силы инерции первого порядка и их моменты при указанном расположении кривошипов взаимноуравновешивается: ΣРjI=0; ΣМjI=0.

Центробежные силы для всех цилиндров равны и направлены попарно в разные стороны. Равнодействующая этих сил и момент равны нулю: ΣКR=0; ΣМR=0.

Суммарный момент от сил инерци второго порядка также равен нулю: ΣМjII=0.

Силы инерции второго порядка для всех цилиндров равны и направленны в одну сторону.

Для разгрузки коленвала от действия местных центробежных сил применяем противовесы.

В целях разгрузки коренных шеек от местных инерционных сил целесообразно установить противовесы на продолжении щек, прилегающих к ним.

Определяем равнодействующую силу инерции второго порядка:

ΣРjII = 4×РjII= 4×mj×R×

, (121)

где mj = 1,612 кг – массы, совершающие возвратно-поступательное движение;

;

w = 346 рад/с – угловая скорость вращения коленчатого вала;

φ = 90º.

ΣРjII = 4×1,612×0,043×

Определяем силу инерции одного противовеса:

Рпр = - 0,5× ΣРjII×l / l1 , (122)

где l = 116 мм (см. рисунок 5.1)

l1 = 85 мм (см. рисунок 5.1)

Рпр = - 0,5× -8926 ×116 / 85 = 6093 Н.

Масса каждого противовеса:

mпр= Рпр/(

), (123)

где ρ = 0,04 м – расстояние центра тяжести общего противовеса от оси коленчатого вала

mпр= 6093 / (0,04 × 3462) = 1,27 кг.

Рис. 5.1. Схема сил инерции действующих в четырехцилиндровом рядном двигателе.

4.3.2 Равномерность крутящего момента и равномерность хода двигателя

Из динамического расчета имеем максимальный крутящий момент Мкр.max=636,1 Н×м; минимальный индикаторный крутящий момент Мкр.min= -104,9 Н×м и средний индикаторный крутящий момент Мкр.ср=243 Н×м.

Определяем равномерность крутящего момента:

m = (Мкр.max– Мкр.min) / Мкр.ср, Н×м ; (124)

m = (636,1-(-104,9)) / 243 = 3,05.

Определяем избыточную работу крутящего момента:

Lизб.=

·MM·Mφ΄,Дж , (125)

где Mφ΄–масштаб угла поворота вала на диаграмме Мкр., рад/мм;

Mφ΄= 4 · π / (i·ОА), рад/мм ;(126)

Mφ¢ = 4 · 3,14 / (4·60)= 0,0523 рад/мм.

F¢= 357 мм2 -площадь над прямой среднего крутящего момента;

MM = 16,878 Н· м/мм/

Lизб.= 357 × 16,878 ×0,0523 = 315,1 Дж.

Принимаем коэффициент неравномерности хода двигателя δ=0,01.

Определяем момент инерции движущихся масс двигателя, приведенных к оси коленчатого вала:

Iо = Lизб / (δ· ω2), кг·м2;(127)

Iо = 315,1 / (0,01×3462) = 0,263 кг·м2.


5. Расчёт основных деталей двигателя

Расчет деталей с целью определения напряжений и деформаций, возникающий при работе двигателя, производится по формулам сопротивления материалов и деталей машин. До настоящего времени большинство из используемых расчетных выражений дают лишь приближенные значения напряжений.

Несоответствие расчетных и фактических данных объясняется различными причинами, основными из которых являются: отсутствие действительной картины распределения напряжений в материале рассчитываемой детали; использование приближенных расчетных схем действия сил и места их приложения; наличие трудно учитываемых знакопеременных нагрузок и невозможность определения их действительных значений; трудность определения условий работы многих деталей двигателя и их термических напряжений; влияние неподдающихся точному расчету упругих колебаний; невозможность точного определения влияния состояния поверхности, качества обработки (механической или термической), размеров детали и т.д. на величину возникающих напряжений.

В связи с этим применяемые методы расчета позволяют получить напряжения и деформации, являющиеся лишь условными величинами и характеризующие только сравнительную напряженность рассчитываемой детали.

5.1 Расчёт цилиндропоршневой группы

5.1.1 Расчёт поршня

На основании данных теплового расчёта скоростной характеристики получили что:

– Диаметр поршня D=100мм;

– Ход поршня S=86мм;

– Максимальное давление сгорания pz=7,57МПа, при nN=3310 об/мин и действительном давлении сгорания pzd=6,43МПа;

– Площадь поршня Fп=78,5см2;

– Наибольшая нормальная сила Nmax=2864 H, при φ=3900;

– Масса поршневой группы mn=1,18 кг;

– Обороты максимальной скорости, nxx=3975 об/мин, при λ=0,269.

В соответствии с существующими аналогичными двигателями и с учётом соотношений принимаем по таблице 51 [1]:

– Толщина днища поршня δ=9мм;

– Высота поршня Н=105мм;

– Высота юбки поршня hю=75мм;

– Радиальная толщина кольца t=4мм;