Смекни!
smekni.com

Проект централізованого технічного обслуговування маршрутних транспортних засобів на базі філії "ТЕМП-АВТО" відкритого акціонерного товариства "РІВНЕ-АВТО" (стр. 8 из 19)

В машинобудуванні широке застосування знаходять двохшвидкісні електричні головки. В роз’ємний корпус вмонтовані високочастотний асинхронний трьохфазний електродвигун з короткозамкнутим ротором і два планетарних редуктори. На кінці водила редуктора знаходиться кулачкова півмуфта, профіль кулачка якої виконаний у вигляді рівнобедреної перерізаної трапеції. З півмуфтою під дією пружини зчеплена інша півмуфта, з’єднана з шпинделем шліцами, передає шпинделю швидкі оберти від водила. Ведена півмуфта має можливість переміщуватися в осьовому напрямку і проковзувати по кулачках ведучої півмуфти, коли шпиндель навантажується до крутного моменту, на який відрегульована пружина. Одночасно водило третього редуктора має торцьові пилкоподібні зубці і є ведучою півмуфтою обгінної муфти, обертається на малих обертах і зчіплюючись під дією пружини з веденою півмуфтою надітою на зовнішні шліци шпинделя, передає йому малі оберти. Півмуфта переміщується в осьовому напрямку.

Таким чином, при відсутності навантаження на шпинделі обертання з водила другого редуктора через кулачкову муфту передається на шпиндель, і він, обертаючись на великих обертах, загвинчує різьбове з’єднання. В момент затягування різьбового з'єднання крутний момент на шпинделі збільшується, при цьому кулачкова півмуфта проковзує по зубцях ведучої півмуфти, входить в зачеплення півмуфта з півмуфтою водила і проходить подальше затягування різьбового з’єднання на малих обертах з підвищеним крутним моментом. Коли крутний момент досягає заданого моменту затягування реле максимального струму вимикає електродвигун.

В деяких складальних виробництвах отримують розповсюдження гідрогвинтові гайковерти (показаний на листі). Двигун такого гайковерта виконаний в вигляді трьох стальних гвинтів, які приводить в рух мастило під тиском 60–70 кгс/см2. Через редуктор обертання передається на шпиндель.

До переваг гідрогвинтових гайковертів слід віднести високий крутний момент на одиницю маси; високий (біля 60%) ККД; менші, чим у пневматичних інструментів, габаритні розміри; велика зносостійкість деталей в зв’язку з їх мащенням; можливість точного регулювання крутного моменту; безшумність в роботі; менші експлуатаційні затрати.

Гідрогвинтові гайковерти будуть в ряді випадків більш зручнішими для вмонтовування в гайко- і гвинтозагвинчуючі агрегати автоматичних складальних машин і ліній.

В конструкціях багатошпиндельних різьбозагвинчуючих станків, як і в підвісних багатошпиндельних установках, багатошпиндельний блок може компонуватися на базі таких самих пневматичних, електричних і гідравлічних силових головок, які приміняються в підвісних установках.

Основними вузлами багатошпиндельних різьбозагвинчуючих станків являються різьбозагвинчуючі блоки, що встановлюються на силових столах. Силові столи забезпечують підвід в робочу зону і відвід багатошпиндельних блоків. Керування роботою силових столів і різьбозагвинчуючих блоків здійснюється з пульта керування.

В залежності від конструкції вузла, що збирається, різьбозагвинчуючі блоки можуть встановлюватися на вертикальних стійках, горизонтальних станинах, займати будь-яке просторове положення.

В багатошпиндельних станках при способі затягування різьбових з’єднань з контролем моменту на ключі, широко використовуються різного роду конструкції муфт граничного моменту, точність спрацювання яких визначає точність затягування різьбових з’єднань. Муфти граничного моменту встановлюються на приводі кожного шпинделя. Як правило, вони застосовуються в конструкціях багатошпиндельних блоків з приводом шпинделів від одного двигуна. На практиці широко застосовують пружинно-кулачкові муфти як найбільш прості по конструкції. Кулачками в даній конструкції являються ролики 1 і кульки 2, що прижаті пружинами 3. При досягненні заданого моменту затягування, кульки, стискаючи пружини, проковзують відносно роликів. При застосуванні цих муфт втрати крутного моменту затягування складає 20–30%.

2.3 Аналіз конструкцій гайковертів

Робочі органи по принципу дії групуються на безударні, ударні, імпульсно-фрикційні, вібраційні. Компонування робочих органів в багатошпиндельних пристосуваннях може бути рядна, кільцева, в перпендикулярних напрямках, під кутом і інші.

Принцип дії робочих органів різьбозгвинчуючого обладнання безударної (статичної) дії базується на обертальному ефекті. Можна виділити три типи таких робочих органів: прямого приводу (без обмежувальних муфт); з обмежувальними муфтами; з активним контролем крутного моменту згвинчування.

В робочих органах першого типу використовується пневматичний (рідше гідравлічний) привід. Обертання від пневмодвигуна через редуктор передається безпосередньо на шпиндель. При затягуванні різьбових з’єднань робота здійснюється як за рахунок статичного крутного моменту, що створюється двигуном, так і за рахунок кінетичної енергії обертальних частин приводу. Максимальний крутний момент затягування досягається при повній зупинці двигуна. При операціях відгвинчування реалізується тільки статичний крутний момент, величина якого пропорційна тиску стисненого повітря в мережі живлення.

Робочі органи, що входять в склад механізованого інструменту, дозволяють проводити розбирання-збирання різьбових з’єднань з діаметром до 12 мм; якщо вони вмонтовуються в блоки силових головок багатошпиндельних установок, то максимальний діаметр різьб може доходити до 25 мм [1].

Різьбозгвинчуючі робочі органи безударної дії з обмежувальними муфтами, як правило, мають електричний привід.


Рис. 2.4. Схема електричної силової головки: 1 – ключова насадка; 2 – пружина; 3 – муфта вмикання; 4 – регулювальна гайка; 5 – пружина; 6,7 – складові частини кулачкові муфти; 8 – редуктор; 9 – асинхронний двигун

Крутний момент від двигуна 9 через редуктор 8 передається на муфту з кулачками 6 і 7, виконуючу функцію обмеження ганичного моменту згвинчування. Кулачки знаходятся в зачепленні під дією пружини 5, сила натискання якої регулюється гайкой 4, що розміщена на вихідному валі. Муфта 3 виконує функції вмикання і вимикання обертання ключа 1. При виконанні технологічної операції, осьова сила, прикладена до рабочого органу, долає опір пружини 2 і муфта вмикається, ключ починає обертатися. Після закінчення роботи дія осьової сили припиняється, пружина 2 вимикає муфту і обертання на ключ не передається.

Крім кулачкових муфт в деяких конструкціях силових головок використовують також кулькові, фрикційні та магнітні муфти.

В якості електричного приводу у різьбозгвинчуючого обладнання застосовуються однофазні колекторні електродвигуни потужністю 120…750 Вт, напругою 220 в, асинхронні електродвигуни трьохфазного і однофазного виконання потужністю 120…750 Вт, напругою 380 і 220 в і асинхронні двигуни підвищеної частоти 200 Гц потужністю 120…750 Вт, напругою 36 в [1].

Безударні рабочі органи з активним контролем крутного моменту згвинчування (г= 0,08…0,15) використовуються в багатошпиндельних установках з індивідуальним електричним (рідше пневматичним) приводом. Конструкції контрольных пристроїв доволі разноманітні.

Найбільше розповсюдження отримали частоударні гайковерти з гвинтовим переміщенням бойка (ударника). Вони мають електричний або пневматичний привід і мають багато переваг у порівнянні з іншими. Продуктивність ударних гайковертів практично задовольняє всі види виробництва (індивідуальне, серійне, масове). В ручних машинах даного виду використовуються привідні двигуни меншої потужності, ніж у аналогічних інструментів обертальної дії, майже відсутній реактивний момент, що дає можливість застосовувати їх для збирання різьбових з’єднань великих діаметрів. В наш час промисловість випускає три типи електричних і до десяти типів пневматичних ударних гайковертів.

Рідкоударні у порівнянні з частоударними мають певні недоліки, а саме: поява «кромочного удару» при певній жорсткості різьбових з’єднань, велика складність конструкції ударного механізму.

Розглянемо роботу ударного механізму. При встановленні змінної насадки на елемент РЗ, який згвинчуємо (гайка, шпилька) оператор надає робочому органу осьове переміщення. В результаті цього долається опір зворотної пружини і бойок, посаджений на привідний вал, своїми кулачками зчіплюється з кулачками наковальні, яка виконана як одне ціле з шпинделем. Робоча пружина стиснення, встановлена між упорним підшипником і бійком, кінематично замикає останній з валом з допомогою двох кульок, які розміщені в V – подібних спіральних канавках вала і бойка. Кульки допускають гвинтове переміщення бойка відносно вала (при подоланні опору пружини) по одній із гілок V – подібних канавок в залежності від напрямку обертання. В вихідному положенні бійка кульки знаходяться в верхніх частинах канавок.

При ввімкненні двигуна бойок і наковальня обертаються як єдине ціле і передають на шпиндель крутний момент від вала. Як тільки момент опору в різьбовій парі перевищить момент, який створюється силою стискання пружини і опором переміщенню кульок по канавкам, кутова швидкість наковальні і бійка знижується, а вал продовжує обертатися з попередньою кутовою швидкістю. В цей момент кульки починають перекочуватися по канавкам, створюючи динамічне осьове переміщення бійка відносно вала (відскок від наковальні). При цьому кулачки розчіплюються, а пружина додатково стискається. Обертання наковальні і шпинделя припиняється, а бойок знову отримує кутову швидкість вала. Під дією стисненої пружини бойку передається прискорений гвинтовий рух в зворотному напрямку і його кулачки наносять крутний удар по кулачкам наковальні. При цьому кінетична енергія бойка передається наковальні і через змінну насадку на згвинчуваний елемент РЗ. Далі описаний процес періодично повторюється.