Смекни!
smekni.com

Грузовые вагоны нового поколения (стр. 5 из 8)

Во-вторых, существенно изменена конструкция соединения корпусов букс с боковинами, увеличившая их подвижность по отношению к боковинам и возможность поворота колесных пар на достаточно большие углы относительно боковых рам тележки, что негативно влияет на устойчивость экипажа в рельсовой


колее. Этому способствуют большие продольные (величина их может ус достигать 20 мм и более) и поперечные зазоры в буксовых проемах, а также значительный разброс базовых размеров боковых рам. Необходимо заметить, что на американских тележках величина продольного зазора составляет всего 2 мм. Так и как взаимодействие надрессорной балки и боковой рамы тележки осуществляется через фрикционные клинья и пружинный комплект, надрессорная балка имеет большую свободу как продольных и поперечных, так и угловых смещений при залегании боковых рам, обусловленную наличием зазоров в буксовых проемах. Это при ее движении в кривых участках пути приводит к параллелограммированию тележки и, как следствие, к увеличению сопротивления движению, подрезу гребней колес и боковому износу головок рельсов.

Таким образом, основными недостатками конструкции тележки 18-100 являются:

• недостаточная связанность узлов рамы тележки в плане из-за угловых поворотов надрессорной балки на наклонных поверхностях фрикционных клиньев, которая приводит к неравномерному распределению горизонтальных динамических сил и перекосу рамы, что интенсифицирует взаимодействие тележки с кузовом вагона и путевой структурой;

• недостаточная связанность колесных пар с боковыми рамами тележки, которая допускает смещение боковых рам относительно буксовых узлов, обусловливает быстрый и неравномерный износ опорных поверхностей рам, корпусов букс и перераспределение нагрузок, что вызывает перегрузку осей колесных пар и снижение долговечности буксовых подшипников;

• использование в старых моделях вагонов простейших скользунов жесткого и опорного соединения пятник — подпятник с быстро и неравномерно изнашивающимися поверхностями, что способствует нестабильности ходовых характеристик вагона и ускоряет износ колесных пар и других элементов тележки;

• применение букс, опорные поверхности которых неудовлетворительно взаимодействуют с опорными поверхностями буксовых проемов боковых рам, что приводит к ускоренному неравномерному износу, заклиниванию, смещениям, обусловливая перегрузку роликовых подшипников и перекосу колесных пар относительно рамы тележки с отрицательными последствиями. Применяемые технологии наплавки изношенных поверхностей корпусов букс часто приводят к реформированию посадочных поверхностей под установку подшипников;

• связь боковых рам и надрессорной балки обеспечивается за счет работы фрикционных клиньев рессорного подвешивания, и характеристики этой связи, как показывают исследования ВНИИЖТа, не обеспечивают гарантированного ограничения забегания боковых рам и перекоса колесных пар; • значения упругих идиссипативных параметров системы горизонтального обрессоривания кузова вагона, прежде всего в порожнем его состоянии, не являются эффективными. Из-за недостаточного конструктивного запаса величины свободного хода надрессорной банки относительно боковых рам амплитуда ее относительного поперечного перемещения от положения, соответствующего статическому равновесию, как правило, не превышает 18 мм. Вследствие недостаточного демпфирования горизонтальных колебаний при замыкании зазора между фрикционным клином и боковой рамой происходит удар клина об упорную колонку боковой рамы и дальнейшая передача ударной нагрузки от боковой рамы на торцы роликов подшипников и на торцовое крепление.

Последний из отмеченных недостатков приводит к появлению дефектов типа «елочка», накоплению продуктов износа и возможному заклиниванию роликов, что в совокупности со значительными вертикальными динамическими нагрузками, обусловленными высокой жесткостью рессорного подвешивания и большой необрессоренной массой, приводит к грению буксовых узлов. Только по причине подтвержденного зрения на сети дорог ежегодно производится отцепка нескольких тысяч вагонов, что наносит значительный экономический ущерб.

Рост боковых сил, в свою очередь, способствует усилению колебаний виляния, боковой качки вагона и приводит к появлению значительных деформаций кузова относительно его продольной оси. В подобных случаях низкий уровень диссипации энергии не только в зоне контакта клиновых гасителей колебаний с фрикционными планками, но и между скользунами приводит к разгрузке рельса. Именно такой режим колебаний является одной из главных причин схода вагонов с рельсов, а также повышения напряженно-деформированного состояния узлов вагона. Только в терминале по подготовке под погрузку полувагонов на станции Входная Западно-Сибирской железной дороги при производстве сварочных работ, вызванных наличием трещин в стойках и верхней обвязке кузова, ежесуточно расходуется около 120 кг электродов.

Необходимо отметить, что фрикционные элементы склонны к проявлению залипания (схватывания) трущихся поверхностей, что является причиной появления скачкообразного трения и возникновения вследствие этого значительных ударных нагрузок, которые не только повреждают конструктивные элементы вагона, но и ведут к ускоренному нарушению параметров верхнего строения пути. Такие фрикционные элементы пропускают высокочастотные вибрации, а контактирующие рабочие поверхности этих элементов и узлов тележки подвержены значительному изнашиванию. Превентивной мерой является использование полиуретановых накладок на фрикционные клинья, что позволяет исключить явления ударного роста динамических нагрузок и уменьшить износ контактирующих поверхностей.

Для увеличения жесткости тележки в горизонтальной плоскости, т. е. повышения связанности элементов тележки в настоящее время применяют перекрестные анкерные связи, а также продольные тяги, дополнительно связывающие боковые рамы с надрессорной балкой. Хотя введение таких связей усложняет конструкцию и повышает стоимость тележки, но они значительно улучшают динамические свойства экипажа и существенно снижают боковой износ рельсов, что способствует сокращению эксплуатационных расходов на тягу поездов.

Одним из способов улучшения динамических свойств грузовых вагонов является совершенствование конструкций боковых опор кузова (опорных скользунов). В последнее время все большее применение получают упруго-роликовые скользуны, улучшающие вписывание вагона в кривую и в то же время ограничивающие виляние тележки, а следовательно боковую качку вагона в прямых участках пути.

Конструктивные решения реализованы в конструкции новой трехэлементной тележки 18-1711, разработанной в результате совместной работы ученых Украины (Институт технической механики) и России (ФГУП «Научно-внедренческий центр «Вагоны»). В ней наряду с диагональными связями применены фрикционные клинья пространственного действия, а также адаптеры и полиуретано-металлические упругие элементы связи колесных пар с боковыми рамами, способствующие увеличению суммарного статического прогиба системы рессорного подвешивания в целом. При этом передача нагрузки от упругого элемента на буксу осуществляется, как и в тележке Барбера, через адаптер.

Как отмечают разработчики проекта, основные преимущества тележки 18-1711 перед тележкой 18-100, подтвержденные результатами ходовых испытаний, заключаются в значительном улучшении показателей безопасности движения груженого и порожнего вагонов, повышении коэффициента запаса усталостной прочности боковой рамы, снижении бокового воздействия на путь при аналогичном вертикальном уменьшении износа колесных пар.

Острая необходимость снижения воздействия грузового вагона на путь требует снижения его необрессоренной массы. Этому направлению соответствуют французская тележка У25 и тележки английских железных дорог СТР и ТР 25 с гидравлическим демпфером, тележка железных дорог КНР модели 75р, а также отечественная тележка, подкатываемая под фитинговые платформы. Необходимо отметить существенное влияние суровых климатических условий на эффективность работы гидравлических гасителей при почти экстремальных продолжительных низких температурах.

Другим примером совершенствования конструкции тележки грузового вагона может служить разработанная в Германии тележка LEILA-DG. Использованные в ней резиновые клиновые рессоры имеют прогрессивную характеристику, зависящую от нагрузки и обеспечивающую устойчивость хода вагона как с грузом, так и в порожнем состоянии. Расположение упругих элементов в буксовых узлах между колесами, а не снаружи позволяет увеличить так называемую «приведенную длину маятника», уменьшив за счет этого собственную частоту боковых колебаний, и, следовательно, улучшить плавность хода вагона. Особенностью этой тележки является применение диагональных связей для поперечного соединения колесных пар, что заметно улучшило ходовые качества как на прямолинейных участках, так и в кривых, и способствует снижению износа гребней колес и рельсов.

Одним их существенных недостатков тележек с Н-образной рамой по сравнению с трехэлементными, имеющими литые боковины, является высокая жесткость на кручение, что при недостаточной гибкости рессор, установленных между буксой и рамой, снижает ее устойчивость против схода с рельсов. Этот факт давно установлен в результате натурных испытаний тележки, разработанной Уралвагонзаводом около тридцати лет назад.

Недостатки традиционного рессорного подвешивания железнодорожных экипажей, основанного на применении линейных упругих элементов в комбинации с фрикционными или гидравлическими гасителями колебаний, стали особенно очевидны в последнее время, когда из-за значительного износа подвижного состава и рельсов железные дороги несут значительные издержки, обусловленные многочисленными ограничениями скорости, сходами вагонов с рельсов и другими более тяжелыми последствиями.