W = b / 6Н ∙ (H3 – h3) =0.00469 м3
Определим напряжения возникающие в сечение 1-1:
σ= N /Fвсего сечения = 10.9 МПа,
N = 742.9 кН;
Fвсего сечения = 0.06783 м2
σ ЭКВ =
= 10.9 МПаОпределим сечение стрелы 2-2.
Определим размеры поперечного сечения стрелы 2-2. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.
F = HB - bh = 0.369 ∙ 0.340 – 0.323∙ 0.298 = 0.029206 м2
X1 = 0.17 м
Y1 = 0.1845 м
Определим момент инерции сечения:
JX = HB3 –bh3 / 12 = 0.000496 м4
Определим момент сопротивления сечения:
W = HB3 –bh3 / 6H = 0.002919 м3
Определим напряжения возникающие в сечение 2-2:
σmax= Mизг /W = 57.79 МПа,
где
Мизг = 168.7 кНм
τ = Q / ∑Fст = 10.55 МПа,
Q = 143.18 кН;
∑Fст = 0.013566 м2
σ= N /Fвсего сечения = 12.7 МПа,
где
N = 371.45 кН;
Fвсего сечения = 0.029206 м2
σ ЭКВ =
= 72.85 МПаОпределим сечение стрелы в шарнире соединения стрелы с гидроцилиндром стрелы 3-3.
Определим размеры поперечного сечения стрелы 3-3. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.
1. F1 = b ∙ (H - h) = 0.298 ∙ (0.200 – 0.120) = 0.02384 м2
X1 = b / 2 = 0.149 м
Y1 = H / 2 = 0.1 м
1. F2 = Bh+2b ∙ (H - h) = 0.340 ∙ 0.023 + 2 ∙ 0.021 ∙ (0.1675 – 0.023) =
= 0.013889 м2
X1 = B / 2 = 0.17 м
Y1 = Bh2+2b ∙ (H2 - h2) / 2(Bh+2b ∙ (H - h)) = 0.0483 м
Y1' = H - Y1 = 0.1192 м
2. F3 = Bh+2b ∙ (H - h) = 0.340 ∙ 0.023 + 2 ∙ 0.021 ∙ (0.1675 – 0.023) =
= 0.013889 м2
X1 = B / 2 = 0.17 м
Y1 = Bh2+2b ∙ (H2 - h2) / 2(Bh+2b ∙ (H - h)) = 0.0483 м
Y1' = H - Y1 = 0.1192 м
Определим моменты инерции сечения в отдельности и всего сечения в целом:
1. JX1 = b / 12 ∙ (H3 – h3) = 0.298 / 12 ∙ (0.23 – 0.123) = 0.000155754 м4
2. JX2 = Bh3 + 2 b ∙ (H – h) 3/ 12 + Bh(Y1 – h/2) 2 + 2 b ∙ (H – h) (H – h / 2 + h - Y1)= = 0.000306433 м4
3. JX3 = Bh3 + 2 b ∙ (H – h) 3/ 12 + Bh(Y1 – h/2) 2 + 2 b ∙ (H – h) (H – h / 2 + h - Y1)= = 0.000306433 м4
Учитывая поправку Штейнера получим:
JX2 + ( y2)2F2 = 0.000446 м4
JX3 + ( y3)2F3 = 0.000446 м4
JX общ =∑JXi= 0.00105 м4
Определим момент сопротивления относительно нейтральной линии:
W = JX общ / YC = 0.00461 м3
Определим напряжения возникающие в сечение 3-3:
σmax= Mизг /W = 73.18 МПа,
где
Мизг = 337.4 кНм
τ = Q / ∑Fст = 31.5 МПа,
Q = 49.6 кН;
∑Fст = 0.0015918 м2
σ= N /Fвсего сечения = 1.1 МПа,
где
N = 57.1 кН;
Fвсего сечения = 0.051618 м2
σ ЭКВ =
= 74.3 МПаОпределим сечение стрелы 4-4.
Определим размеры поперечного сечения стрелы 4-4. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.
F = HB - bh = 0.00588 м2
X1 = 0.170 м
Y1 = 0.2275 м
Определим момент инерции сечения:
JX = HB3 –bh3 / 12 = 0.000588 м4
Определим момент сопротивления сечения:
W = HB3 –bh3 / 6H = 0.00346 м3
Определим напряжения возникающие в сечение 4-4:
σmax= Mизг /W = 97.15 МПа,
где
Мизг = 336.15 кНм
τ = Q / ∑Fст = 2.8 МПа,
где
Q = 49.6 кН;
∑Fст = 0.017178 м2
σ= N /Fвсего сечения = 9.71 МПа,
где
N = 57.1 кН;
Fвсего сечения = 0.00588 м2
σ ЭКВ =
= 106.96 МПаОпределим сечение стрелы 5-5.
Определим размеры поперечного сечения стрелы 5-5. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.
F = HB - bh = 0.0031138 м2
X1 = 0.170 м
Y1 = 0.2075 м
Определим момент инерции сечения:
JX = HB3 –bh3 / 12 = 0.000545508 м4
Определим момент сопротивления сечения:
W = HB3 –bh3 / 6H = 0.00320887 м3
Определим напряжения возникающие в сечение 5-5:
σmax= Mизг /W = 46 МПа,
где
Мизг = 147.63 кНм
τ = Q / ∑Fст = 5.73 МПа,
где
Q = 88.9 кН;
∑Fст = 0.015498 м2
σ= N /Fвсего сечения = 176.7 МПа,
где
N = 550.3 кН;
Fвсего сечения = 0.0031138 м2
σ ЭКВ =
= 222.92 МПаОпределим сечение стрелы 6-6.
Определим размеры поперечного сечения стрелы 6-6. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.
F = HB - bh = 0.0028282 м2
X1 = 0.170 м
Y1 = 0.1735 м
Определим момент инерции сечения:
JX = HB3 –bh3 / 12 = 0.000472746 м4
Определим момент сопротивления сечения:
W = HB3 –bh3 / 6H = 0.00278086 м3
Определим напряжения возникающие в сечение 6-6:
σmax= Mизг /W = 48.38 МПа,
где
Мизг = 134.55 кНм
τ = Q / ∑Fст = 5.2 МПа,
где
Q = 66.137 кН;
∑Fст = 0.012642 м2
σ= N /Fвсего сечения = 27.8 МПа,
где
N = 78.6 кН;
Fвсего сечения = 0.0028282 м2
σ ЭКВ =
= 76.7 МПаОпределим сечение стрелы в шарнире соединения стрелы с рукоятью 7-7.
Определим размеры поперечного сечения стрелы 7-7. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.
F = hb = 0.067 ∙ 0.064 = 0.004288 м2
X1 = b / 2 = 0.032 м
Y1 = h / 2 = 0.0335 м
Определим моменты инерции сечения в отдельности и всего сечения в целом:
Учитывая поправку Штейнера получим JX :
JX = (bh3 / 12+ F ∙ (y) 2) ∙ 4 = 0.000352268 м4
Определим момент сопротивления относительно нейтральной линии:
W = JX / YC = 0.0033709 м3
Определим напряжения возникающие в сечение 7-7:
τ = Q / ∑Fст = 7.23 МПа,
где
Q = 124 кН;
∑Fст = 0.017152 м2
σ= N /Fвсего сечения = 27.05 МПа,
где
N = 463.9 кН;
Fвсего сечения = 0.017152 м2
σ ЭКВ =
= 29.8 МПаПо окончанию расчетов рукояти, стрелы и ковша примем сталь марки 09Г2С ГОСТ 19282-73 с пределом текучести 305 МПа, которая рекомендуется в "РД 2201…86" для проектирования металлоконструкции экскаватора.
Заключение
В проекте, в соответствии с темой "Проектирование рабочего оборудования одноковшового экскаватора", было спроектировано рабочее оборудование экскаватора, состоящие из стрелы, рукояти и ковша, тяги, коромысла с привязанными к ним гидроцилиндрами. Для осуществления данного проекта проведены расчеты:
- разработка базовой части гусеничного экскаватора;
- определение основных параметров рабочего оборудования;
- расчет рабочего оборудования;
- расчет параметров ковша;
- расчет объёмного гидропривода рабочего оборудования экскаватора;
- расчет параметров насосно- силовой установки. Выбор типоразмеров насосов и первичного двигателя;
- расчет металлоконструкции рабочего оборудования;
В результате данных расчетов получили основные характеристики экскаватора:
- объём ковша – 0.4 м3;
- глубина копания – 5.91 м;
- максимальная высота выгрузки – 4.6 м;
- максимальный радиус копания – 8.9 м;
- угол поворота рабочего оборудования - 360º;
1. Крикун В.Я., Манасян В.Г. "Расчет основных параметров гидравлических экскаваторов с рабочим оборудованием обратная лопата" Издание первое – М., "Издательство Ассоциации строительных вузов", 2001 г.
2. Анурьев В.И. " Справочник конструктора-машиностроителя", т.1. М., "Машиностроение", 1979 г.
3. Анурьев В.И. " Справочник конструктора-машиностроителя", т.2. М., "Машиностроение", 1980 г.
4. Анурьев В.И. " Справочник конструктора-машиностроителя", т.3. М., "Машиностроение", 1981 г.
5. Крикун В.Я., "Привязка гидравлических цилиндров копающих механизмов к рабочему оборудованию экскаватора" – М., "Строительные и дорожные машины", 1997 г.