Рис. 5. Схема к определению параметров гидроцилиндра рукояти.
2.4 Выбор типоразмеров гидроцилиндров и их привязка
2.4.1 Выбор типоразмеров гидроцилиндра привода рукояти
Определим работу, затрачиваемую на преодоление сопротивлений грунта копанию рукоятью:
где К1 – удельное сопротивление грунта копанию, К1=220 кПа;
Кэ – коэффициент энергоемкости, Кэ=0.94;
q – вместимость ковша, q=0.4 м3;
lк=R1=1.2 м;
Hp=3.94 м – оптимальная глубина копания;
τ – угол наклона откоса безопасности к уровню стоянки экскаватора, τ=75˚30’
Для определения работы AG(кДж), затрачиваемой на преодоление сил тяжести рабочего оборудования и грунта в ковше, предварительно найдем силы тяжести ковша, рукояти с гидроцилиндром привода ковша, коромыслом и тягой, стрелы с гидроцилиндром привода рукояти и грунта в ковше.
Масса ковша mк (т) определена ранее, массы рукояти тр (т) и стрелы mс (т) определим приближенно по подобию с уже имеющимися экскаваторами как
где
Массу грунта в ковше в начале (тгн, т) и в конце (mгв, т) прямолинейного участка ВС определим как:
где
V- объем грунта в ковше
Тогда
Определим силы тяжести рабочего оборудования.
Сила тяжести рукояти:
Сила тяжести стрелы:
Сила тяжести ковша:
Сила тяжести грунта в ковше в начале и в конце участка ВС:
С использованием полученных данных вычислим работу, затрачиваемую на преодоление сопротивления сил тяжести элементов рабочего оборудования и грунта в ковше на указанных перемещениях:
Полная работа, затрачиваемая на преодоление сопротивлений грунта копанию и подъему рабочего оборудования с грунтом, определится суммой:
Такую же работу, с учетом потерь на трение в кинематических парах, учитываемых коэффициентом полезного действия (КПД) механизма поворота рукояти, выполнит гидроцилиндр ее привода:
Приближенно указанный КПД можно определить как:
где
n - число шарниров (п = 3);
Тогда работа гидроцилиндра механизма поворота рукояти будет равна:
Представим работу
где
В пределах рассматриваемого перемещения рабочего оборудования ход поршня Lnиспользуется лишь частично - Ln'. Предполагая перемещение поршня примерно пропорциональным синусу половины углового перемещения рукояти относительно стрелы, найдем:
где ради сокращения записи в дальнейших расчетах обозначено:
где
Представим работу гидроцилиндра в виде:
Произведение
По этому параметру (отклонение в меньшую сторону не более 10%) предварительно выберем типоразмер гидроцилиндра (таб. 3).
Таблица 3
Диаметр поршня D, мм | 140 |
Диаметр штока d, мм | 90 |
Наружный диаметр гильзы D1, мм | 168 |
Наружный радиус концевой проушины r, мм | 100 |
Размер A=L0-Lш, мм | 580 |
Площадь поршня F, см2 | 153.9 |
Рабочий объем W, л | 13.85 |
Ход поршня L, мм | 900 |
2.4.2 Выбор типоразмеров гидроцилиндра механизма поворота ковша
Механизм поворота ковша состоит из стойки (рукояти) 1 (рис. 6), ползунковой пары гильза гидроцилиндра - поршень со штоком 2, коромысла 3, тяги 4 и ведомого звена (ковша) 5.
Рис. 6. Конструктивная схема механизма поворота ковша
Не располагая исчерпывающими результатами исследований оптимальных отношений кинематических звеньев механизма, для расчета назначим их по подобию с существующими экскаваторными механизмами (в долях от длины ведомого звена
Длина стойки
Длина большего плеча коромысла
Длина тяги
Вычислим работу сил сопротивления грунта копанию без учета влияния изменчивости толщины грунтовой стружки: